Ammonia modified graphene-carbon nanotubes/continuous carbon fiber reinforced epoxy unidirectional multiscale composites (AMGNS-MWCNT/CFEP) were prepared by adding ammonia modified graphene and carbon nanotubes to an epoxy matrix to reduce agglomeration of carbon nanofillers in the epoxy matrix and improve composites properties. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and universal testing machines were used to characterize the properties of carbon nanofillers, AMGNS-MWCNT/epoxy nanocomposites, and AMGNS-MWCNT/CFEP unidirectional composites. When the AMGNS-MWCNT content was 1.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
February 2017
N type silicon-rich nanocrystalline-SiN(x) ∶ H films were prepared by plasma enhanced chemical vapor deposition technique by changing NH3 flow rate. The effect of nitrogen incorporation on the microstructure and photoelectric properties of the thin films were characterized by Raman, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectra, and Hall effect measurement. The results indicated that with the increasing NH3, a phase transition from microcrystalline to amorphous silicon occured.
View Article and Find Full Text PDF