Publications by authors named "Rui-tian Liu"

Background: Deoxyribonuclease 2 (DNase II) plays a key role in clearing cytoplasmic double-stranded DNA (dsDNA). Deficiency of DNase II leads to DNA accumulation in the cytoplasm. Persistent dsDNA in neurons is an early pathological hallmark of senescence and neurodegenerative diseases including Alzheimer's disease (AD).

View Article and Find Full Text PDF

The elderly frequently present impaired blood-brain barrier which is closely associated with various neurodegenerative diseases. However, how the albumin, the most abundant protein in the plasma, leaking through the disrupted BBB, contributes to the neuropathology remains poorly understood. We here demonstrated that mouse serum albumin-activated microglia induced astrocytes to A1 phenotype to remarkably increase levels of Elovl1, an astrocytic synthase for very long-chain saturated fatty acids, significantly promoting VLSFAs secretion and causing neuronal lippoapoptosis through endoplasmic reticulum stress response pathway.

View Article and Find Full Text PDF

The neurotoxic α-synuclein (α-syn) oligomers play an important role in the occurrence and development of Parkinson's disease (PD), but the factors affecting α-syn generation and neurotoxicity remain unclear. We here first found that thrombomodulin (TM) significantly decreased in the plasma of PD patients and brains of A53T α-syn mice, and the increased TM in primary neurons reduced α-syn generation by inhibiting transcription factor p-c-jun production through Erk1/2 signaling pathway. Moreover, TM decreased α-syn neurotoxicity by reducing the levels of oxidative stress and inhibiting PAR1-p53-Bax signaling pathway.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disease with the hallmark of aggregation of beta-amyloid (Aβ) into extracellular fibrillar deposition. Accumulating evidence suggests that soluble toxic Aβ oligomers exert diverse roles in neuronal cell death, oxidative stress, neuroinflammation, and the eventual pathogenesis of AD. Aβ is derived from the sequential cleavage of amyloid-β precursor protein (APP) by β-secretase (BACE1) and γ-secretase.

View Article and Find Full Text PDF

Dendritic cell (DC) maturation and antigen presentation are key factors for successful vaccine-based cancer immunotherapy. This study developed manganese-based layered double hydroxide (Mn-LDH) nanoparticles as a self-adjuvanted vaccine carrier that not only promoted DC maturation through synergistically depleting endogenous glutathione (GSH) and activating STING signaling pathway, but also facilitated the delivery of model antigen ovalbumin (OVA) into lymph nodes and subsequent antigen presentation in DCs. Significant therapeutic-prophylactic efficacy of the OVA-loaded Mn-LDH (OVA/Mn-LDH) nanovaccine was determined by the tumor growth inhibition in the mice bearing B16-OVA tumor.

View Article and Find Full Text PDF

Aged male patients are more vulnerable to severe or critical symptoms of COVID-19, but the underlying mechanism remains elusive. In this study, we analyzed previously published scRNA-seq data from a large cohort of COVID-19 patients, castrated and regenerated mice, and bulk RNA-seq of a RNAi library of 400 genes, and revealed that both immunity and OXPHOS displayed cell-type-, sex-, and age-related variation in the severe or critical COVID-19 patients during disease progression, with a more prominent increase in immunity and decrease in OXPHOS in myeloid cells in the males relative to the females (60-69 years old). Male severe or critical patients above 70 years old were an exception in that the compromised negative correlation between OXPHOS and immunity in these patients was associated with its disordered transcriptional regulation.

View Article and Find Full Text PDF

Amyloid-β (Aβ) plays an important role in the neuropathology of Alzheimer's disease (AD), but some factors promoting Aβ generation and Aβ oligomer (Aβo) neurotoxicity remain unclear. We here find that the levels of ArhGAP11A, a Ras homology GTPase-activating protein, significantly increase in patients with AD and amyloid precursor protein (APP)/presenilin-1 (PS1) mice. Reducing the ArhGAP11A level in neurons not only inhibits Aβ generation by decreasing the expression of APP, PS1, and β-secretase (BACE1) through the RhoA/ROCK/Erk signaling pathway but also reduces Aβo neurotoxicity by decreasing the expressions of apoptosis-related p53 target genes.

View Article and Find Full Text PDF

Passive immunotherapy is one of the most promising interventions for Alzheimer's disease (AD). However, almost all immune-modulating strategies fail in clinical trials with unclear causes although they attenuate neuropathology and cognitive deficits in AD animal models. Here, we showed that Aβ-targeting antibodies including their lgG1 and lgG4 subtypes induced microglial engulfment of neuronal synapses by activating CR3 or FcγRIIb via the complex of Aβ, antibody, and complement.

View Article and Find Full Text PDF

Background: Tau pathology is a hallmark of Alzheimer's disease (AD) and other tauopathies. During disease progression, abnormally phosphorylated forms of tau aggregate and accumulate into neurofibrillary tangles, leading to synapse loss, neuroinflammation, and neurodegeneration. Thus, targeting of tau pathology is expected to be a promising strategy for AD treatment.

View Article and Find Full Text PDF

Layered double hydroxide (LDH) is a 'sandwich'-like two-dimensional clay material that has been systematically investigated for biomedical application in the past two decades. LDH is an alum-similar adjuvant, which has a well-defined layered crystal structure and exhibits high adjuvanticity. The unique structure of LDH includes positively charged layers composed of divalent and trivalent cations and anion-exchangeable interlayer galleries.

View Article and Find Full Text PDF
Article Synopsis
  • - The research focuses on understanding the immunogenicity and potential vaccination targets of SARS-CoV-2 by predicting the 3D structures and B cell epitopes on its proteins (S, E, M, N).
  • - Out of 33 predicted epitopes, nearly all stimulate antibody production, with six being immunodominant in people, and 23 being conserved across different coronaviruses.
  • - Notably, the immunodominant epitopes differ between individuals infected with domestic and imported strains of SARS-CoV-2 due to specific protein mutations, highlighting potential implications for effective vaccine development.
View Article and Find Full Text PDF

α-synuclein (α-syn) is a protein associated with the pathogenesis of Parkinson's disease (PD), the second most common neurodegeneration disease with no effective treatment. However, how α-syn drives the pathology of PD remains elusive. Recent studies suggest that α-syn oligomers are the primary cause of neurotoxicity and play a critical role in PD.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder. No disease-modifying strategy to prevent or delay AD progression currently exists. Aβ oligomers (AβOs), rather than monomers or fibrils, are considered as the primary neurotoxic species.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia. Diagnosing AD before symptoms arise will facilitate earlier intervention. The early diagnostic approaches are thus urgently needed.

View Article and Find Full Text PDF

Immunotherapy focusing on reducing the amyloid-beta (Aβ) burden is a promising treatment strategy for Alzheimer's disease (AD). Many clinical studies on AD immunotherapies have failed due to low safety and efficacy, calling for a highly potent AD vaccine which induces sufficient antibody titer while avoiding side effects. Here, we designed a yeast-based vaccine Y-5A15 comprising five copies of Aβ1-15 displayed on the surface of yeast cell wall, and we subcutaneously immunized APP/PS1 mice three times.

View Article and Find Full Text PDF

It is widely accepted that β-amyloid oligomers (Aβos) play a key role in the progression of Alzheimer's disease (AD) by inducing neuron damage and cognitive impairment, but Aβos are highly heterogeneous in their size, structure and cytotoxicity, making the corresponding studies tough to carry out. Nevertheless, a number of studies have recently made remarkable progress in the describing the characteristics and pathogenicity of Aβos. We here review the mechanisms by which Aβos exert their neuropathogenesis for AD progression, including receptor binding, cell membrane destruction, mitochondrial damage, Ca homeostasis dysregulation and tau pathological induction.

View Article and Find Full Text PDF

Enhancing both the humoral and cellular immune response for tumor vaccination remains a challenge. Inspired by natural pathogen structures, we took β-glucan particles derived from a baker's yeast cell shell (YS) as a vaccine carrier and danger signal for dendritic cells (DCs), and coated the YS with catanionic layered double hydroxides (LDH) by electrostatic adsorption to form a biomimetic yeast cell particle (YSL). Our experimental results showed that the YSL vaccine efficiently targeted antigen-presenting cells (APCs) and remarkably enhanced antigen cross-presentation, and strongly improved the activation and maturation of DCs.

View Article and Find Full Text PDF

Personalized cancer vaccine which targets neoepitopes shows great promise for cancer treatment. However, rapid preparation is a critical challenge for clinical application of personalized cancer vaccine. Genetic recombination and chemical modification are a time-consuming "trial and error" pattern for making vaccines.

View Article and Find Full Text PDF

Huntington's disease (HD) is a genetic neurodegenerative disorder caused by a highly polymorphic CAG trinucleotide repeat expansion encoding an extended polyglutamine (polyQ) tract at the N-terminus of huntingtin protein (HTT). The polyQ tract promotes the formation of toxic oligomers and aggregates of HTT, which leads to neuronal dysfunction and death. Therapies to lower mutant HTT (mHTT) and its aggregates appear to be the most promising strategies.

View Article and Find Full Text PDF

Background And Purpose: Immunotherapeutic intervention is one of the most promising strategies for the prevention and treatment of Alzheimer's disease (AD). Although they showed great success in AD mouse models, the clinical trials of many immune approaches failed due to low efficacy and safety. Thus, an animal model which can show the potential side effects of vaccines or antibodies is urgently needed.

View Article and Find Full Text PDF

Cancer recurrence and metastasis are worldwide challenges but current bimodular strategies such as combined radiotherapy and chemotherapy (CTX), and photothermal therapy (PTT) and immunotherapy have succeeded only in some limited cases. Thus in the present study, a multifunctional nanomedicine has been rationally designed via elegantly integrating three FDA-approved therapeutics, that is, indocyanine green (for PTT), doxorubicin (for CTX), and CpG (for immunotherapy) into the structure of layered double hydroxide (LDH) nanoparticles, aiming to completely prevent the recurrence and metastasis of invasive breast cancer. This multifunctional hybrid nanomedicine has been demonstrated to eliminate the primary tumor and efficiently prevent tumor recurrence and lung metastasis through combined PTT/CTX and induction of specific and strong immune responses mediated by the hybrid nanomedicine in a 4T1 breast cancer mouse model.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is characterized by the presence of extracellular amyloid-β (Aβ) plaques and intraneuronal neurofibrillary tangles assembled by the microtubuleassociated protein tau. Increasing evidence demonstrated that tau pathology played an important role in AD progression. Resveratrol (RSV) has previously proved to exert neuroprotective effect against AD by inhibiting Aβ generation and Aβ-induced neurocytotoxicity, while its effect on tau pathology is still unknown.

View Article and Find Full Text PDF

It has been suggested that aggregation of α-synuclein (α-syn) into oligomers leads to neurodegeneration in Parkinson's disease (PD), but intravenous immunoglobulin (IVIG) which contains antibodies against α-syn monomers and oligomers fails to treat PD mouse model. The reason may be because IVIG contains much low level of antibodies against α-syn, and of which only a small part can penetrate the blood-brain barrier, resulting in an extremely low level of effective antibodies in the brain, and limiting the beneficial effect of IVIG on PD mice. Here, we first isolated naturally occurring autoantibodies against α-syn (NAbs-α-syn) from IVIG.

View Article and Find Full Text PDF

It is widely accepted that amyloid oligomers are the most toxic species to initiate the pathologic processes of Parkinson's disease (PD) and Huntingdon's disease (HD). But there is no definitive diagnosis for PD and HD at their early stages. Here, we conjugated an amyloid oligomer-specific scFv antibody (W20) to PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) and detected the properties of the SPIONs conjugated with W20.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disorder characterized by Lewy pathology and progressive loss of dopaminergic neurons in the substantia nigra. Lewy pathology mainly consists of abnormal aggregates of α-synuclein, which play a pivotal role in PD pathophysiology. However, the complexity of PD leads to clinical challenges, and there are still no treatments to halt or slow the neurodegenerative process.

View Article and Find Full Text PDF