We report on the fabrication of a NO gas sensor from room-temperature reduction of graphene oxide(GO) via two-beam-laser interference (TBLI). The method of TBLI gives the distribution of periodic dissociation energies for oxygen functional groups, which are capable to reduce the graphene oxide to hierarchical graphene nanostructures, which holds great promise for gaseous molecular adsorption. The fabricated reduced graphene oxide(RGO) sensor enhanced sensing response in NO and accelerated response/recovery rates.
View Article and Find Full Text PDFWe present novel nanoporous TiO(2)/polyion thin-film-coated long-period fiber grating (LPFG) sensors for the direct measurement of low-molecular-weight chemicals by monitoring the resonance wavelength shift. The hybrid overlay films are prepared by a simple layer-by-layer deposition approach, which is mainly based on the electrostatic interaction of TiO(2) nanoparticles and polyions. By the alternate immersion of LPFG into dispersions of TiO(2) nanoparticles and polyions, respectively, the so-formed TiO(2)/polyion thin film exhibits a unique nanoporous internal structure and has a relative higher refractive index than LPFG cladding.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
February 2011
We have reported first example of 3D hierarchy structure from self-assembly of water-soluble QDs followed by chemical reaction control. After addition of ethylenediaminetetraacetic acid, dipotassium salt dehydrate (EDTA) into L-cysteine-stabilized CdTe QD solution, the color of solution was observed to become lighter and shallower, and finally white precipitates appeared. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results confirm that the morphology transformation from zero dimensional (0D) QDs via two-dimensional (2D) nanoflakes to 3D microflowers occurs among those QD assemblies.
View Article and Find Full Text PDF