Publications by authors named "Rui-Zhen Sun"

Foam cell formation and macrophage polarization are involved in the pathologic development of atherosclerosis, one of the most important human diseases affecting large and medium artery walls. This study was designed to assess the effects of rapamycin and FTY720 (fingolimod) on macrophages and foam cells. Mouse peritoneal macrophages were collected and treated with rapamycin and FTY720 to study autophagy, polarization, and lipid accumulation.

View Article and Find Full Text PDF

Somatic cell nuclear transfer (SCNT) is an important technique for life science research. However, most SCNT embryos fail to develop to term due to undefined reprogramming defects. Here, we show that abnormal Xi occurs in somatic cell NT blastocysts, whereas in female blastocysts derived from cumulus cell nuclear transfer, both X chromosomes were inactive.

View Article and Find Full Text PDF

Somatic cell nuclear transfer is an important technique for life science research, but its efficiency is still extremely low, and most genes that are important during early development, such as X chromosome-linked genes, are not appropriately expressed during this process. Poly (ADP-ribose) polymerase (PARP) is an enzyme that transfers ADP ribose clusters to target proteins. PARP family members such as PARP1 participate in cellular signalling pathways through poly (ADP-ribosylation) (PARylation), which ultimately promotes changes in chromatin structure, gene expression, and the localization and activity of proteins that mediate signalling responses.

View Article and Find Full Text PDF

Mouse parthenogenetic embryonic stem cells (PgESCs) could be applied to study imprinting genes and are used in cell therapy. Our previous study found that stem cells established by aggregation of two parthenogenetic embryos at 8-cell stage (named as a2 PgESCs) had a higher efficiency than that of PgESCs, and the paternal expressed imprinting genes were observably upregulated. Therefore, we propose that increasing the number of parthenogenetic embryos in aggregation may improve the development of parthenogenetic mouse and imprinting gene expression of PgESCs.

View Article and Find Full Text PDF

Parthenogenetic embryonic stem cells (PgES) might advance cell replacement therapies and provide a valuable in vitro model system to study the genomic imprinting. However, the differential potential of PgES cells was limited. It could result from relative low heterology of PgES cells compared with ES cells from fertilization (fES), which produce different expression of most imprinted genes.

View Article and Find Full Text PDF

In this study, we generated embryonic stem cells from parthenogenetic embryos (PESCs), and induced them to differentiate to motor neurons, which could be an alternative source of histocompatible cells for replacement of therapy and theoretical foundation for studying the relationship of genome imprint and neural differentiation. The parthenogenetic activation rate of B6D2F1 mouse oocytes was 93.26%.

View Article and Find Full Text PDF