Virus-derived gene transfer vectors have been successfully employed to express the transcription activator-like effector nucleases (TALENs) in mammalian cells. Since the DNA-binding domains of TALENs consist of the variable di-residue (RVD)-containing tandem repeat modules and virus genome with repeated sequences is susceptible to genetic recombination, we investigated several factors that might affect TALEN cleavage efficiency of baculoviral vectors. Using a TALEN system designed to target the AAVS1 locus, we observed increased sequence instability of the TALE repeat arrays when a higher multiplicity of infection (MOI) of recombinant viruses was used to produce the baculoviral vectors.
View Article and Find Full Text PDFIntegrative gene transfer using retroviruses to express reprogramming factors displays high efficiency in generating induced pluripotent stem cells (iPSCs), but the value of the method is limited because of the concern over mutagenesis associated with random insertion of transgenes. Site-specific integration into a preselected locus by engineered zinc-finger nuclease (ZFN) technology provides a potential way to overcome the problem. Here, we report the successful reprogramming of human fibroblasts into a state of pluripotency by baculoviral transduction-mediated, site-specific integration of OKSM (Oct3/4, Klf4, Sox2, and c-myc) transcription factor genes into the AAVS1 locus in human chromosome 19.
View Article and Find Full Text PDFBackground: The AAVS1 locus is viewed as a 'safe harbor' for transgene insertion into human genome. In the present study, we report a new method for AAVS1 targeting in human-induced pluripotent stem cells (hiPSCs).
Methods: We have developed two baculoviral transduction systems: one to deliver zinc finger nuclease (ZFN) and a DNA donor template for site-specific gene insertion and another to mediate Cre recombinase-mediated cassette exchange system to replace the inserted transgene with a new transgene.
Safety and reliability of transgene integration in human genome continue to pose challenges for stem cell-based gene therapy. Here, we report a baculovirus-transcription activator-like effector nuclease system for AAVS1 locus-directed homologous recombination in human induced pluripotent stem cells (iPSCs). This viral system, when optimized in human U87 cells, provided a targeted integration efficiency of 95.
View Article and Find Full Text PDFMicroRNA-132 (miR-132) has been demonstrated to affect multiple neuronal functions, including dendritic growth and spinogenesis in cultured neurons and brain slices, as well as learning behavior of animals. However, its role in acquisition of temporal-associated memory remains unclear. In this study, we demonstrated that the mature miR-132 level in mouse hippocampus was significantly increased at 30 min after trace fear conditioning, a type of temporal-associated learning, and returned to baseline values in 2 h.
View Article and Find Full Text PDF