J Integr Plant Biol
January 2025
In apple (Malus domestica), the abscisic acid (ABA)-responsive factor ABA INSENSITIVE5 directly activates MORE AXILLARY GROWTH2 (MdMAX2), an important strigolactone signaling component; an abscisic acid-restricted E3 ubiquitin ligase modulates MdMAX2 turnover, thus linking strigolactone and abscisic acid signaling.
View Article and Find Full Text PDFJasmonic acid (JA) and gibberellin (GA) coordinately regulate plant developmental programs and environmental cue responses. However, the fine regulatory network of the cross-interaction between JA and GA remains largely elusive. In this study, we demonstrate that MdNAC72 together with MdABI5 positively regulates anthocyanin biosynthesis through an exquisite MdNAC72-MdABI5-MdbHLH3 transcriptional cascade in apple.
View Article and Find Full Text PDFAnthocyanins are secondary metabolites induced by environmental stimuli and developmental signals. The positive regulators of anthocyanin biosynthesis have been reported, whereas the anthocyanin repressors have been neglected. Although the signal transduction pathways of gibberellin (GA) and jasmonic acid (JA) and their regulation of anthocyanin biosynthesis have been investigated, the cross-talk between GA and JA and the antagonistic mechanism of regulating anthocyanin biosynthesis remain to be investigated.
View Article and Find Full Text PDFWounding stress leads to leaf senescence. However, the underlying molecular mechanism has not been elucidated. In this study, we investigated the role of the MdVQ10-MdWRKY75 module in wound-induced leaf senescence.
View Article and Find Full Text PDFCold stress limits plant growth, geographical distribution, and crop yield. The MYC-type bHLH transcription factor ICE1 is recognized as the core positive regulator of the cold-stress response. However, how ICE1 protein levels are regulated remains to be further studied.
View Article and Find Full Text PDFThe optimal prescription of tanshinone Ⅱ_A(TSN)-glycyrrhetinic acid(GA) solid lipid nanoparticles(GT-SLNs) was explored and evaluated in vivo and in vitro, and its effect on acne after oral administration was investigated. The preparation processing and prescription were optimized and verified by single factor and response surface methodology. The in vitro release of GA and TSN in GT-SLNs was determined by ultra-performance liquid chromatography(UPLC).
View Article and Find Full Text PDFAbscisic acid is involved in the regulation of cold stress response, but its molecular mechanism remains to be elucidated. In this study, we demonstrated that the APETALA2/ethylene responsive factor (AP2/ERF) family protein MdABI4 positively regulates abscisic acid-mediated cold tolerance in apple. We found that MdABI4 interacts with MdICE1, a key regulatory protein involved in the cold stress response, and enhances the transcriptional regulatory function of MdICE1 on its downstream target gene MdCBF1, thus improving abscisic acid-mediated cold tolerance.
View Article and Find Full Text PDFJasmonate (JA) induces the biosynthesis of anthocyanin and proanthocyanidin. MdMYB9 is essential for modulating the accumulation of both anthocyanin and proanthocyanidin in apple, but the molecular mechanism for induction of anthocyanin and proanthocyanidin biosynthesis by JA is unclear. In this study, we discovered an apple telomere-binding protein (MdTRB1) to be the interacting protein of MdMYB9.
View Article and Find Full Text PDFPhytohormone ethylene is involved in salt stress response. As a key regulator of ethylene signaling, ethylene response factors (ERFs) have been reported to regulate salt stress tolerance. However, there are few studies on the relationship between ERFs in salt stress response.
View Article and Find Full Text PDFPhytohormone abscisic acid (ABA) induces anthocyanin biosynthesis; however, the underlying molecular mechanism is less known. In this study, we found that the apple MYB transcription factor MdMYB1 activated anthocyanin biosynthesis in response to ABA. Using a yeast screening technique, we isolated MdbZIP44, an ABA-induced bZIP transcription factor in apple, as a co-partner with MdMYB1.
View Article and Find Full Text PDFIt is known that ethylene signaling is involved in the regulation of the salt stress response. However, the molecular mechanism of ethylene-regulated salt stress tolerance remains largely unclear. In this study, an apple NAM ATAF CUC transcription factor, MdNAC047, was isolated and functionally characterized to be involved in ethylene-modulated salt tolerance.
View Article and Find Full Text PDFIn plants, the transcription factor families have been implicated in many important biological processes. These processes include morphogenesis, signal transduction and environmental stress responses. Proteins containing the lateral organ boundaries domain (LBD), which encodes a zinc finger-like domain are only found in plants.
View Article and Find Full Text PDFAuxin response factors (ARF) are transcription factors that regulate auxin responses in plants. Although the genomewide analysis of this family has been performed in some species, little is known regarding ARF genes in apple (Malus domestica). In this study, 31 putative apple ARF genes have been identified and located within the apple genome.
View Article and Find Full Text PDFObjective: To assess the level of an inpatient population's awareness about hepatitis and primary liver cancer (PLC), the most common type of which is hepatocellular carcinoma (HCC), and then to initiate education of this group.
Methods: A survey was conducted with 1300 participants within the inpatient unit in representative tertiary hospitals in the Chaoshan area of China. Structured questionnaires contained demographic data and statements about different aspects of liver cancer and hepatitis.
The molecular mechanism for sensing and transducing the stress signals initiated by K(+) deprivation in plants remains unknown. Here, we found that the expression of AtHELPS, an Arabidopsis DExD/H box RNA helicase gene, was induced by low-K(+), zeatin and cold treatments, and downregulated by high-K(+) stress. To further investigate the expression pattern of AtHELPS, pAtHELPS::GUS transgenic plants were generated.
View Article and Find Full Text PDF