The magnetism of Kitaev materials has been widely studied, but their charge properties and the coupling to other degrees of freedom are less known. Here we investigate the charge states of α-RuCl, a promising Kitaev quantum spin liquid candidate, in proximity to graphite. We discover that few-layered α-RuCl experiences a clear modulation of charge states, where a Mott-insulator to weak charge-transfer-insulator transition in the 2D limit occurs by means of heterointerfacial polarization.
View Article and Find Full Text PDFCorrelation and frustration play essential roles in physics, giving rise to novel quantum phases. A typical frustrated system is correlated bosons on moat bands, which could host topological orders with long-range quantum entanglement. However, the realization of moat-band physics is still challenging.
View Article and Find Full Text PDFFermi arcs on Weyl semimetals exhibit many exotic quantum phenomena. Usually found on atomically flat surfaces with approximate translation symmetry, Fermi arcs are rooted in the peculiar topology of bulk Bloch bands of 3D crystals. The fundamental question of whether a 1D Fermi arc can be probed remains unanswered.
View Article and Find Full Text PDFA temperature below 100 µK is achieved in a customized cryogen-free dilution refrigerator with a copper-nuclear demagnetization stage. The lowest temperature of conduction electrons of the demagnetization stage is below 100 µK as measured by using a pulsed platinum nuclear magnetic resonance thermometer, and the temperature can remain below 100 µK for over 10 h. A demagnetization magnetic field of up to 9 T and a research magnetic field of up to 12 T can be controlled independently, provided by a coaxial room-temperature-bore cryogen-free magnet.
View Article and Find Full Text PDFWe investigated the characteristics of nitrogen uptake, distribution, and utilization in the three-year-old bearing Huangguan pear trees following N-urea application in early spring. The results showed that the growth of pear trees was mainly depended on vegetative organs such as shoots and leaves at the stage from budbreak to shoot growth arrest, but mainly on storage organs (roots) and supplemented by the formation of fruit yield and quality at the stage from shoot growth arrest stage to fruit harvest. Meanwhile, tree biomass, especially that storage organs, substantially increased.
View Article and Find Full Text PDFWe observe the magnetic oscillation of electric conductance in the two-dimensional InAs/GaSb quantum spin Hall insulator. Its insulating bulk origin is unambiguously demonstrated by the antiphase oscillations of the conductance and the resistance. Characteristically, the in-gap oscillation frequency is higher than the Shubnikov-de Haas oscillation close to the conduction band edge in the metallic regime.
View Article and Find Full Text PDFElectron-hole pairing can occur in a dilute semimetal, transforming the system into an excitonic insulator state in which a gap spontaneously appears at the Fermi surface, analogous to a Bardeen-Cooper-Schrieffer (BCS) superconductor. Here, we report optical spectroscopic and electronic transport evidence for the formation of an excitonic insulator gap in an inverted InAs/GaSb quantum-well system at low temperatures and low electron-hole densities. Terahertz transmission spectra exhibit two absorption lines that are quantitatively consistent with predictions from the pair-breaking excitation dispersion calculated based on the BCS gap equation.
View Article and Find Full Text PDFWe report on a class of quantum spin Hall insulators (QSHIs) in strained-layer InAs/GaInSb quantum wells, in which the bulk gaps are enhanced up to fivefold as compared to the binary InAs/GaSb QSHI. Remarkably, with consequently increasing edge velocity, the edge conductance at zero and applied magnetic fields manifests time reversal symmetry-protected properties consistent with the Z_{2} topological insulator. The InAs/GaInSb bilayers offer a much sought-after platform for future studies and applications of the QSHI.
View Article and Find Full Text PDFWe report on the observation of a helical Luttinger liquid in the edge of an InAs/GaSb quantum spin Hall insulator, which shows characteristic suppression of conductance at low temperature and low bias voltage. Moreover, the conductance shows power-law behavior as a function of temperature and bias voltage. The results underscore the strong electron-electron interaction effect in transport of InAs/GaSb edge states.
View Article and Find Full Text PDFWe have engineered electron-hole bilayers of inverted InAs/GaSb quantum wells, using dilute silicon impurity doping to suppress residual bulk conductance. We have observed robust helical edge states with wide conductance plateaus precisely quantized to 2e^{2}/h in mesoscopic Hall samples. On the other hand, in larger samples the edge conductance is found to be inversely proportional to the edge length.
View Article and Find Full Text PDFQuantum spin Hall devices with edges much longer than several microns do not display ballistic transport; that is, their measured conductances are much less than e(2)/h per edge. We imaged edge currents in InAs/GaSb quantum wells with long edges and determined an effective edge resistance. Surprisingly, although the effective edge resistance is much greater than h/e(2), it is independent of temperature up to 30 K within experimental resolution.
View Article and Find Full Text PDFWe observe edge transport in the topologically insulating InAs/GaSb system in the disordered regime. Using asymmetric current paths we show that conduction occurs exclusively along the device edge, exhibiting a large Hall signal at zero magnetic fields, while for symmetric current paths, the conductance between the two mesoscopicly separated probes is quantized to 2e2/h. Both quantized and self-averaged transport show resilience to magnetic fields, and are temperature independent for temperatures between 20 mK and 1 K.
View Article and Find Full Text PDFPhys Rev Lett
November 2012
We present an experimental study of S-N-S junctions, with N being a quantum spin Hall insulator made of InAs/GaSb. A front gate is used to vary the Fermi level into the minigap, where helical edge modes exist [Phys. Rev.
View Article and Find Full Text PDFWe present an experimental study of low temperature electronic transport in the hybridization gap of inverted InAs/GaSb composite quantum wells. An electrostatic gate is used to push the Fermi level into the gap regime, where the conductance as a function of sample length and width is measured. Our analysis shows strong evidence for the existence of helical edge modes proposed by Liu et al [Phys.
View Article and Find Full Text PDF