Publications by authors named "Rui-Juan Xiao"

Single-crystalline Ni-rich cathodes with high capacity have drawn much attention for mitigating cycling and safety crisis of their polycrystalline analogues. However, planar gliding and intragranular cracking tend to occur in single crystals with cycling, which undermine cathode integrity and therefore cause capacity degradation. Herein, we intensively investigate the origin and evolution of the gliding phenomenon in single-crystalline Ni-rich cathodes.

View Article and Find Full Text PDF

Cation ordering/disordering in spinel oxides plays an essential role in the rich physical and chemical properties which are hallmarks of the structural archetype. A variety of cation-ordering motifs have been reported for spinel oxides with multiple cations residing on the octahedral site (or B-site). This has attracted tremendous attention from both experimental and theoretical communities in the last few decades.

View Article and Find Full Text PDF

Structural dynamics and changes in electronic structures driven by photoexcited carriers are critical issues in both semiconducting and optoelectronic nanodevices. Herein, a phase diagram for the transient states and relevant dynamic processes in multiwalled boron nitride nanotubes (BNNTs) has been extensively studied for a full reversible cycle after a fs-laser excitation in ultrafast TEMs, and the significant structural features and evolution of electronic natures have been investigated using pulsed electron diffraction and femtosecond-resolved electron energy-loss spectroscopy (EELS). It is revealed that nonthermal anisotropic alterations of the lattice apparently precede the phonon-driven thermal transients along the radial and axial directions.

View Article and Find Full Text PDF

Lithium-sulfur batteries possess favorable potential for energy-storage applications because of their high specific capacity and the low cost of sulfur. Intensive understanding of the interfacial mechanism, especially the polysulfide formation and transformation under complex electrochemical environment, is crucial for the buildup of advanced batteries. Here, we report the direct visualization of interfacial evolution and dynamic transformation of the sulfides mediated by the lithium salts via real-time atomic force microscopy monitoring inside a working battery.

View Article and Find Full Text PDF