Publications by authors named "Rui-Heng Jiao"

The Floquet engineering opens the way to create new topological states without counterparts in static systems. Here, we report the experimental realization and characterization of new anomalous topological states with high-precision Floquet engineering for ultracold atoms trapped in a shaking optical Raman lattice. The Floquet band topology is manipulated by tuning the driving-induced band crossings referred to as band inversion surfaces (BISs), whose configurations fully characterize the topology of the underlying states.

View Article and Find Full Text PDF

The famous Kibble-Zurek mechanism offers us a significant clue to study quantum phase transitions out of equilibrium. Here, we investigate an intriguing phenomenon of a spin-orbit coupled Bose-Einstein condensate by quenching the Raman coupling strength from a high-symmetry phase (nonmagnetic phase) to a low-symmetry phase (magnetic phase). When crossing the critical point, the fluctuation of momentum distribution leads to delayed bifurcation structures.

View Article and Find Full Text PDF

Quantum dynamics induced in quenching a d-dimensional topological phase across a phase transition may exhibit a nontrivial dynamical topological pattern on the (d-1)D momentum subspace, called band inversion surfaces (BISs), which have a one-to-one correspondence to the bulk topology of the postquench phase. Here we report the experimental observation of such dynamical bulk-surface correspondence through measuring the topological charges in a 2D quantum anomalous Hall model realized in an optical Raman lattice. The system can be quenched with respect to every spin axis by suddenly varying the two-photon detuning or phases of the Raman couplings, in which the topological charges and BISs are measured dynamically by the time-averaged spin textures.

View Article and Find Full Text PDF

A ultralow noise magnetic field is essential for many branches of scientific research. Examples include experiments conducted on ultracold atoms, quantum simulations, and precision measurements. In ultracold atom experiments specifically, a bias magnetic field will often serve as a quantization axis and be applied for Zeeman splitting.

View Article and Find Full Text PDF