Gene regulatory networks (GRNs) are crucial for understanding organismal molecular mechanisms and processes. Construction of GRN in the epithelioma papulosum cyprini (EPC) cells of cyprinid fish by spring viremia of carp virus (SVCV) infection helps understand the immune regulatory mechanisms that enhance the survival capabilities of cyprinid fish. Although many computational methods have been used to infer GRNs, specialized approaches for predicting the GRN of EPC cells following SVCV infection are lacking.
View Article and Find Full Text PDFInferring gene regulatory network (GRN) is one of the important challenges in systems biology, and many outstanding computational methods have been proposed; however there remains some challenges especially in real datasets. In this study, we propose Directed Graph Convolutional neural network-based method for GRN inference (DGCGRN). To better understand and process the directed graph structure data of GRN, a directed graph convolutional neural network is conducted which retains the structural information of the directed graph while also making full use of neighbor node features.
View Article and Find Full Text PDFThe inference of gene regulatory networks (GRNs) from gene expression profiles has been a key issue in systems biology, prompting many researchers to develop diverse computational methods. However, most of these methods do not reconstruct directed GRNs with regulatory types because of the lack of benchmark datasets or defects in the computational methods. Here, we collect benchmark datasets and propose a deep learning-based model, DeepFGRN, for reconstructing fine gene regulatory networks (FGRNs) with both regulation types and directions.
View Article and Find Full Text PDFBMC Bioinformatics
September 2021
Background: As one of the deadliest diseases in the world, cancer is driven by a few somatic mutations that disrupt the normal growth of cells, and leads to abnormal proliferation and tumor development. The vast majority of somatic mutations did not affect the occurrence and development of cancer; thus, identifying the mutations responsible for tumor occurrence and development is one of the main targets of current cancer treatments.
Results: To effectively identify driver genes, we adopted a semi-local centrality measure and gene mutation effect function to assess the effect of gene mutations on changes in gene expression patterns.
IEEE/ACM Trans Comput Biol Bioinform
April 2023
Lots of experimental studies have revealed the significant associations between lncRNAs and diseases. Identifying accurate associations will provide a new perspective for disease therapy. Calculation-based methods have been developed to solve these problems, but these methods have some limitations.
View Article and Find Full Text PDFBackground: Circular RNAs (circRNAs) are a class of single-stranded RNA molecules with a closed-loop structure. A growing body of research has shown that circRNAs are closely related to the development of diseases. Because biological experiments to verify circRNA-disease associations are time-consuming and wasteful of resources, it is necessary to propose a reliable computational method to predict the potential candidate circRNA-disease associations for biological experiments to make them more efficient.
View Article and Find Full Text PDFObjective: Sepsis and septic shock remain a common problem that results in significant mortality and morbidity in pediatric intensive care units (PICU). According to literature, the use of more physiologic steroid replacement therapy is associated with hemodynamic and survival benefits in adult patients with relative adrenal insufficiency (RAI) and catecholamine-resistant septic shock. But little information is available in children.
View Article and Find Full Text PDF