Dynamic responsive structural colored materials have drawn increased consideration in a wide range of applications, such as colorimetric sensors and high-safety tags. However, the sophisticated interactions among the individual responsive parts restrict the advanced design of multimodal responsive photonic materials. Inspired by stimuli-responsive color change in chameleon skin, a simple and effective photo-crosslinking strategy is proposed to construct hydroxypropyl cellulose (HPC) based hydrogels with multiple responsive structured colors.
View Article and Find Full Text PDFTo increase the value of waste coconut shells and further broaden their use by biorefining, a milder and greener method to prepare cellulose nanofibers (CCNFs) was developed. The CCNFs were separated from coir fibers by using peroxyformic acid and alkali treatment in combination with high-power ultrasonication. The basic properties of the CCNFs were comprehensively evaluated using scanning and transmission electron microscopy, spectroscopy, diffraction, and thermogravimetric techniques.
View Article and Find Full Text PDFA fundamental challenge in artificial superhydrophobic papers is their poor resistance to mechanical abrasion, which limits their practical application in different fields. Herein, a robust and multifunctional superhydrophobic paper is successfully fabricated via a facile spraying method by combining silver nanowires and fluorinated titania nanoparticles through a common paper sizing agent (alkyl ketene dimer) onto paper. It is shown that the surface of the paper-based material presents a three-dimensional network structure due to the cross-linking of silver nanowires with a high aspect ratio.
View Article and Find Full Text PDFFacing the increasing electromagnetic interference (EMI) pollution in the living environment, it is a new trend to explore an efficient EMI shielding material with facile fabrication and a wide range of application scenarios. A hydrophobic composite paper composed of silver nanowires (AgNWs) and kapok microfibers cellulose (MFC) was modified by methyl trimethoxy silane (MTMS) through a simple method. As a result, the composite paper has a good EMI shielding effectiveness (EMI SE) of 61.
View Article and Find Full Text PDFThe front cover artwork is provided by Prof. Gao's group. The image shows the motion patterns transition of the active gel group under the step light intensity, which describes the mechanism of a new collective emergence structure.
View Article and Find Full Text PDFAbrupt (i. e. step) environmental changes, such as natural disasters or the intervention of predators, can alter the internal dynamics of groups with active units, leading to the rapid destruction and/or restructuring of the group, with the emergence of new collective structures that endow the system with adaptability.
View Article and Find Full Text PDFThe study evaluated the effect of calcium-based desensitizing toothpastes on the dentinal tubule occlusion and its influence on the dentin bond strength of universal adhesive. Mid-coronal dentin samples were prepared for hypersensitivity model and treated by the following calcium-based desensitizing toothpastes: no treatment (Control), Clinpro (fTCP), Pro-Relief (Pro-Argin), and Repair & Protect (Novamin). Single Bond Universal adhesive was applied in self-etch or etch-and-rinse mode.
View Article and Find Full Text PDFTo assess the effect of population genetic polymorphism on forensic research, we investigated the genetic polymorphisms of Chinese Kyrgyz group (n = 98) and evaluated forensic application values in Chinese Kyrgyz group and other 26 reference populations at 90 autosomal SNPs, and then combined with 34 SNPs and 37 STRs on Y chromosome to reveal the genetic background of Kyrgyz group in autosomal and Y-chromosomal inheritances, respectively. The 90 autosomal SNPs and 34 Y-chromosomal SNPs were sequenced base on next generation sequencing technology, and 37 Y-chromosomal STRs were analyzed by capillary electrophoresis platform. The results showed that cumulative power of discrimination and cumulative power of exclusion of 90 autosomal SNPs in the panel met the application need of forensic genetics in Kyrgyz group.
View Article and Find Full Text PDFThe Belousov-Zhabotinsky (BZ) self-oscillating gel is a unique actuator suited for studying the behavior of intelligent soft robots. However, the traditional BZ self-oscillating polyacrylamide (PAAm) gel is easily broken and is slow to response to stimuli, which limits its practical application. Therefore, the preparation of BZ gels with sensitive responses to external stimuli and desirable, robust mechanical properties remains a challenge.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2021
Chemical waves arising from coupled reaction and transport can serve as biomimetic "nerve signals" to study the underlying origin and regulation of active locomotion. During wave propagation in more than one spatial dimension, the propagation direction of spiral and pulse waves in a nanogel-based PAAm self-oscillating gel, i.e.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2021
Preformed crowns are preferred to reduce the failure risk of restoration of primary teeth, but some drawback of conventional material is still a main barrier for their clinical use. Polyether etherketone (PEEK), a tooth colored, high-performance thermoplastic polymer, has been recognized as a promising alternative to manufacture the restoration of primary teeth. However, the hydrophobic surface and low surface energy of PEEK make it hard to establish a strong and durable adhesion.
View Article and Find Full Text PDFNatural killer (NK) cells are innate immune effectors with potent antitumor activity. However, tumor cells can create an immunosuppressive microenvironment to escape immune surveillance. Although accumulating evidence indicates that microenvironmental hypoxia plays an important role in favoring tumor development and immune evasion, it remains unclear by what means hypoxia directly impairs NK cell antitumor activity.
View Article and Find Full Text PDFBackground: Assessing cytotoxicity is fundamental to studying natural killer (NK) cell function. Various radioactive and non-radioactive cytotoxicity assays measuring target cell death have been developed. Among these methods, the most commonly used Chromium-release assay (CRA) and flow cytometry-based cytotoxicity assays (FCCs) are the major representatives.
View Article and Find Full Text PDFAsymmetry in the interaction between an individual and its environment is generally considered essential for the directional properties of active matter, but can directional locomotions and their transitions be generated only from intrinsic chemical dynamics and its modulation? Here, we examine this question by simulating the locomotion of a bioinspired active gel in a homogeneous environment. We find that autonomous directional locomotion emerges in the absence of asymmetric interaction with the environment and that a transition between modes of gel locomotion can be induced by adjusting the spatially uniform intensity of illumination or certain kinetic and mechanical system parameters. The internal wave dynamics and its structural modulation act as the impetus for signal-driven active locomotion in a manner similar to the way in which an animal's locomotion is generated via driving by nerve pulses.
View Article and Find Full Text PDFActive media that host spiral waves can display complex modes of locomotion driven by the dynamics of those waves. We use a model of a photosensitive stimulus-responsive gel that supports the propagation of spiral chemical waves to study locomotive transition and programmed locomotion. The mode transition between circular and toroidal locomotion results from the onset of spiral tip meandering that arises via a secondary Hopf bifurcation as the level of illumination is increased.
View Article and Find Full Text PDFThe wavelength of Belousov-Zhabotinsky (BZ) traveling waves is the key factor that limits the scale of BZ self-oscillating gel motors. To achieve control of the wavelength, it is necessary to evaluate the wavelength dependence on species concentrations and temperature. In this work, the effect of reaction parameters on the wavelength of BZ pulse waves was studied.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
November 2018
Engineered tissue constructs rely on biomaterials as support structures for tissue repair and regeneration. Among these biomaterials, polyester biomaterials have been widely used for scaffold construction because of their merits such as ease in synthesis, degradable properties, and elastomeric characteristics. To mimic the aligned structures of native extracellular matrix (ECM) in tissues such as nerve, heart and tendon, various polyester materials have been fabricated into aligned fibrous scaffolds with fibers ranging from several nanometers to several micrometers in diameter by electrospinning in a simple and reproducible manner.
View Article and Find Full Text PDFShanghai Kou Qiang Yi Xue
February 2015
Purpose: Sprague-Dawley rat models of tooth movement were established to investigate the expression of transient receptor potential vanilloid 1 (TRPV1) and calcitonin gene related peptide (CGRP) in rat trigeminal ganglion during orthodontic tooth movement, and to explore the roles of TRPV1 and CGRP in orthodontic pain.
Methods: Sixty-six Sprague-Dawley rats were randomly divided into control group (n=6), sham operation group (n=6), and experimental group (n=54). Tooth movement models were established, orthodontic force (50 g) was applied on the maxillary first molar in the rats of experimental group, and then the trigeminal ganglia were collected at 4, 8 h, 1 d (3 subgroups were set up according to the force: 1 d-30 g, 1 d-50 g, 1 d-80 g), 3, 5, 7, 14 d after tooth movement.
An essential application of wireless sensor networks is to successfully respond to user queries. Query packet losses occur in the query dissemination due to wireless communication problems such as interference, multipath fading, packet collisions, etc. The losses of query messages at sensor nodes result in the failure of sensor nodes reporting the requested data.
View Article and Find Full Text PDFOn-demand information retrieval enables users to query and collect up-to-date sensing information from sensor nodes. Since high energy efficiency is required in a sensor network, it is desirable to disseminate query messages with small traffic overhead and to collect sensing data with low energy consumption. However, on-demand query messages are generally forwarded to sensor nodes in network-wide broadcasts, which create large traffic overhead.
View Article and Find Full Text PDF