The traditional use of Cordyceps militaris, an entomopathogenic fungus, in East Asian medicine has been well documented. Our previous study revealed that the fruiting body powder of C. militaris, referred to as Ryukyu-kaso, contains 1,3-β-glucan and stimulates bone marrow-derived dendritic cells via a dectin-1-dependent pathway.
View Article and Find Full Text PDFCordyceps militaris, an entomopathogenic fungus, has been traditionally used in East Asian medicine. Recent research indicates that the fruit bodies of C. militaris are rich in bioactive compounds, such as polysaccharides and nucleosides, which may offer health benefits.
View Article and Find Full Text PDFMucosal vaccination is a promising strategy for combating infectious diseases caused by pathogenic microbes, as it can generate antigen-specific immune responses in both systemic and mucosal compartments. In our recent study, we developed a nasal vaccine system for Streptococcus pneumoniae infections in mice using enzymatically polymerized polyphenols such as caffeic acid. However, the efficacy of this mucosal vaccine system is approximately 70%, indicating a need for improvement.
View Article and Find Full Text PDFThe development of mucosal vaccines, which can generate antigen-specific immune responses in both the systemic and mucosal compartments, has been recognized as an effective strategy for combating infectious diseases caused by pathogenic microbes. Our recent research has focused on creating a nasal vaccine system in mice using enzymatically polymerized caffeic acid (pCA). However, we do not yet understand the molecular mechanisms by which pCA stimulates antigen-specific mucosal immune responses.
View Article and Find Full Text PDFAntibodies are essential components of the immune system with a wide range of molecular targets. They have been recognized as modalities for treating several diseases and more than 130 approved antibody-based therapeutics are available for clinical use. However, limitations remain associated with its efficacy, tissue permeability, and safety, especially in cancer treatment.
View Article and Find Full Text PDFStrategies for gene and nucleic acid delivery to skeletal muscles have been extensively explored to treat Duchenne muscular dystrophy (DMD) and other neuromuscular diseases. Of these, effective intravascular delivery of naked plasmid DNA (pDNA) and nucleic acids into muscles is an attractive approach, given the high capillary density in close contact with myofibers. We developed lipid-based nanobubbles (NBs) using polyethylene-glycol-modified liposomes and an echo-contrast gas and found that these NBs could improve tissue permeability by ultrasound (US)-induced cavitation.
View Article and Find Full Text PDFOL-2 is a water-soluble β-glucan produced by Omphalia lapidescens. This versatile glucan has potential applications in various industries, including food, cosmetics, and pharmaceuticals. In addition, OL-2 is known for its promising applications as a biomaterial and drug, owing to its reported antitumor and antiseptic properties.
View Article and Find Full Text PDFThe coronavirus disease 2019, i.e., the COVID-19 pandemic, caused by a highly virulent and transmissible pathogen, has profoundly impacted global society.
View Article and Find Full Text PDFβ-glucans are polysaccharides that activate innate immunity. We herein investigated whether P-glucans promote the immunological effects of antibody drugs against malignant tumor cells using human peripheral blood mononuclear cells (PBMCs). Rituximab bound to CD20-specific lymphoma and exhibited cytotoxic activity in the presence of human mononuclear cells, but not neutrophils.
View Article and Find Full Text PDFA key challenge in treating solid tumors is that the tumor microenvironment often inhibits the penetration of therapeutic antibodies into the tumor, leading to reduced therapeutic efficiency. It has been reported that the combination of ultrasound-responsive micro/nanobubble and therapeutic ultrasound (TUS) enhances the tissue permeability and increases the efficiency of delivery of macromolecular drugs to target tissues. In this study, to facilitate efficient therapeutic antibody delivery to tumors using this combination system, we developed therapeutic antibody-modified nanobubble (NBs) using an Fc-binding polypeptide that can quickly load antibodies to nanocarriers; since the polypeptide was derived from Protein G.
View Article and Find Full Text PDFAutoimmune diseases present a significant clinical problem, highlighting the need for the development of novel or improved therapeutic methods. One of the factors that causes autoimmune diseases is a defect in the clearance of apoptotic cells by phagocytes. Thus, improved apoptotic cell processing has been considered as a strategy to treat autoimmune diseases.
View Article and Find Full Text PDFAn advantage of mucosal vaccines over conventional parenteral vaccines is that they can induce protective immune responses not only at mucosal surfaces but also in systemic compartments. Despite this advantage, few live attenuated or inactivated mucosal vaccines have been developed and applied clinically. We recently showed that the intranasal immunization of ovalbumin (OVA) with class B synthetic oligodeoxynucleotides (ODNs) containing immunostimulatory CpG motif (CpG ODN)-loaded cationic liposomes synergistically exerted both antigen-specific mucosal immunoglobulin A (IgA) and systemic immunoglobulin G (IgG) responses in mice.
View Article and Find Full Text PDFInt Immunopharmacol
December 2021
The COVID-19 pandemic, caused by a highly virulent and transmissible pathogen, has proven to be devastating to society. Mucosal vaccines that can induce antigen-specific immune responses in both the systemic and mucosal compartments are considered an effective measure to overcome infectious diseases caused by pathogenic microbes. We have recently developed a nasal vaccine system using cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane and cholesteryl 3β-N-(dimethylaminoethyl)carbamate in mice.
View Article and Find Full Text PDFConversion of CD4CD25FOXP3 T regulatory cells (T) from the immature (CD45RA) to mature (CD45RO) phenotype has been shown during development and allergic reactions. The relative frequencies of these T phenotypes and their responses to oxidative stress during development and allergic inflammation were analysed in samples from paediatric and adult subjects. The FOXP3CD45RA population was dominant in early childhood, while the percentage of FOXP3CD45RO cells began increasing in the first year of life.
View Article and Find Full Text PDFInfectious diseases are the second leading cause of death worldwide, highlighting the importance of the development of a novel and improved strategy for fighting pathogenic microbes. is a highly pathogenic bacteria that causes pneumonia with high mortality rates, especially in children and elderly individuals. To solve these issues, a mucosal vaccine system would be the best solution for the prevention and treatment of these diseases.
View Article and Find Full Text PDFDespite significant modern medicine progress, having an infectious disease is a major risk factor for humans. Mucosal vaccination is now widely considered as the most promising strategy to defeat infectious diseases; however, only live-attenuated and inactivated mucosal vaccines are used in the clinical field. To date, no subunit mucosal vaccine was approved mainly because of the lack of safe and effective methodologies to either activate or initiate host mucosal immune responses.
View Article and Find Full Text PDFInfectious disease remains a substantial cause of death. To overcome this issue, mucosal vaccine systems are considered to be a promising strategy. Yet, none are approved for clinical use, except for live-attenuated mucosal vaccines, mainly owing to the lack of effective and safe systems to induce antigen-specific immune responses in the mucosal compartment.
View Article and Find Full Text PDFInfections remain a major threat to human lives. To overcome the threat caused by pathogens, mucosal vaccines are considered a promising strategy. However, no inactivated and/or subunit mucosal vaccine has been approved for human use, largely because of the lack of a safe and effective mucosal adjuvant.
View Article and Find Full Text PDFObjective: Infectious diseases remain a threat to human life. Vaccination against pathogenic microbes is a primary method of treatment as well as prevention of infectious diseases. Particularly mucosal vaccination is a promising approach to fight against most infectious diseases, because mucosal surfaces are a major point of entry for most pathogens.
View Article and Find Full Text PDFInfectious diseases are the second leading cause of death worldwide, suggesting that there is still a need for the development of new and improved strategies for combating pathogens effectively. Streptococcus pneumoniae is the most virulent bacteria causing pneumonia with high mortality, especially in children and the elderly. Because of the emergence of antibiotic resistance in S.
View Article and Find Full Text PDFBackground: To overcome infectious diseases, the development of mucosal vaccines would be an effective strategy, since mucosal surfaces are the entry site for most pathogens. In general, protein antigens show inherently poor immunogenicity when administered by the mucosal route. Therefore, co-administration of an appropriate mucosal adjuvant is required to exert immune responses toward pathogen-derived antigens effectively.
View Article and Find Full Text PDFDespite the progress made by modern medicine, infectious diseases remain one of the most important threats to human health. Vaccination against pathogens is one of the primary methods used to prevent and treat infectious diseases that cause illness and death. Vaccines administered by the mucosal route are potentially a promising strategy to combat infectious diseases since mucosal surfaces are a major route of entry for most pathogens.
View Article and Find Full Text PDFTo investigate whether cell wall mannan from Candida metapsilosis induces vasculitis similar to that in Kawasaki syndrome and anaphylactoid shock in mice, we examined the pathogenic effects of C. metapsilosis cell wall extracts. Our results show that intraperitoneal injection of cell wall extracts induced severe coronary arteritis, and intravenous injection induced acute anaphylactoid shock similar to extracts from Candida albicans (C.
View Article and Find Full Text PDFMacrophages are well known for their ability to induce diverse beneficial immune responses, especially in the defense against pathogens. However, an excessive activation of macrophages may cause harmful inflammation. In this context, the suppression of excessive macrophage activation would be a promising therapeutic strategy for treating inflammatory diseases.
View Article and Find Full Text PDF