We report the synthesis and characterization of several chiral salen- and salan-type ligands and their vanadium complexes, which are derived from salicylaldehyde or salicylaldehyde derivatives and chiral diamines (1R,2R-diaminocyclohexane, 1S,2S-diaminocyclohexane, and 1S,2S-diphenylethylenediamine). The structures of H(2)sal(R,R-chan)(2+) x 2 Cl(-) x (CH(3))(2)CHOH x H(2)O (1c; H(2)sal(R,R-chan) = N,N'-salicyl-R,R-cyclohexanediaminium), Etvan(S,S-chen) (3c; Etvan(S,S-chen) = N,N'-3-ethoxy-salicylidene-S,S-cyclohexanediiminato), and naph(R,R-chen) (6c; naph(R,R-chen) = N,N'-naphthylidene-R,R-cyclohexanediiminato) were determined by single-crystal X-ray diffraction. The corresponding vanadium(IV) complexes and several other new complexes involving different salicylaldehyde-type precursors were prepared and characterized in the solid state and in solution by spectroscopic techniques: UV-vis, circular dichroism, electron paramagnetic resonance, and (51)V NMR, which provide information on the coordination geometry.
View Article and Find Full Text PDFThe new bis-iminopyrrolyl five-coordinate Co(II) complexes [Co(kappa (2) N, N'-NC 4H 3C(R)N-2,6- (i)Pr 2C 6H 3) 2(PMe 3)] (R = H 3a; Me 3b) were synthesized in high yields (ca. 80-90%), using THF and diethyl ether as solvents, respectively, by (a) treatment of CoCl 2(PMe 3) 2 with the corresponding iminopyrrolyl Na salts ( Ie or If) or (b) reaction of anhydrous CoCl 2 and PMe 3 with Ie or If. A third route was tested, involving the addition of excesses of PMe 3 to the complexes [Co(kappa (2) N, N'-NC 4H 3C(R)N-2,6- (i)Pr 2C 6H 3) 2] (R = H 1e; Me 1f), which was only successful for the synthesis of 3a, in lower yields (ca.
View Article and Find Full Text PDF2-Formylpyrrole and 2-acetylpyrrole were deprotonated with NaH to give the corresponding Na salts 1a and 1b, respectively. The reactivity of these salts towards cobalt chloride compounds was studied. The resulting new bis(ketopyrrolyl) Co(II) 19-electron complexes [Co(kappa(2)N,O-2-NC4H3C(R)=O)2(PMe3)2] (R = H 2a, and Me 2b) were characterised by single crystal X-ray diffraction, to show an octahedral geometry with the PMe3 ligands in trans positions to each other, and two bidentate ketopyrrolyl ligands occupying the remaining coordination positions in a transoid conformation.
View Article and Find Full Text PDFThe gold and nickel bisdithiolene complexes based on new highly extended ligands incorporating fused tetrathiafulvalene and thiophene moieties (alpha-tdt=thiophenetetrathiafulvalenedithiolate and dtdt=dihydro- thiophenetetrathiafulvalenedithiolate), were prepared and characterised by using cyclic voltammetry, single crystal X-ray diffraction, EPR, magnetic susceptibility and electrical transport measurements. These complexes, initially obtained under anaerobic conditions as diamagnetic gold monoanic [nBu(4)N][Au(alpha-tdt)(2)] (4), [nBu(4)N][Au(dtdt)(2)] (3) and nickel dianionic species [(nBu(4)N)(2)][Ni(alpha-tdt)(2)] (8), [(nBu(4)N)(2)][Ni(dtdt)(2)] (7), can be easily oxidised to the stable neutral state just by air or iodine exposure. The monoanionic complexes crystallise in at least two polymorphs, all of which have good cation and anion segregation in alternated layers, the anion layers making a dense 2D network of short SS contacts.
View Article and Find Full Text PDFA series of 2-iminopyrrole ligand precursors with increasing bulkiness [HNC4H3C(R)=N-2,6-R'2C6H3] (R = R' = H, 1a; R = Me, R'= H, 1b; R = H, R' = Me, 1c; R = R' = Me, 1d; R = H, R' = iPr, 1e; R = Me, R' = iPr, 1f) were synthesized and deprotonated with NaH to give the corresponding iminopyrrolyl sodium salts 2a-f. A set of homoleptic bis-ligand Co(II) complexes of the type [Co(kappa2N,N'-NC4H3C(R)=N-2,6-R'2C6H3)2] (R = R'= H, 3a; R = Me, R'= H, 3b; R = H, R' = Me, 3c; R = R' = Me, 3d; R = H, R' = iPr, 3e; R = Me, R' = iPr, 3f) was prepared by reaction of CoCl2 with the corresponding iminopyrrolyl sodium salts 2a-f. The new complexes were characterized by elemental analysis, magnetic susceptibility measurements, in powder and in solution, UV/vis/NIR, and, in some cases, X-ray crystallography.
View Article and Find Full Text PDFThe reaction of titanium trisamidotriazacyclononane, [Ti{N(Ph)SiMe2}3tacn] (1), with C60 led to the synthesis of [Ti{N(Ph)SiMe2}3tacn]C60 (2) in high yield. Treatment of 2 with PhCH2Br led to the formation of [Ti{N(Ph)SiMe2}3tacn]Br and the radical PhCH2C60 (3). The reaction of CH3I with 1 gives two products.
View Article and Find Full Text PDFOxovanadium(IV) complexes with ligands derived from the reaction of salicylaldehyde with L-cysteine and with D- and D,L-penicillamine are prepared. The compounds are characterised by elemental analysis, spectroscopy (UV-VIS, CD, EPR), TG, DSC and magnetic susceptibility measurements (9-295 K). We discuss several aspects related to the structure of these complexes in the solid state and in solution; in particular, the possibility of forming thiazolidine complexes, and their comparison with the characterised complexes is studied by molecular mechanics and density functional theory calculations.
View Article and Find Full Text PDFThe Schiff base N,N'-ethylenebis(pyridoxylideneiminato) (H(2)pyr(2)en, 1) was synthesized by reaction of pyridoxal with ethylenediamine; reduction of H(2)pyr(2)en with NaBH(4) yielded the reduced Schiff base N,N'-ethylenebis(pyridoxylaminato) (H(2)Rpyr(2)en, 2); their crystal structures were determined by X-ray diffraction. The totally protonated forms of 1 and 2 correspond to H(6)L(4+), and all protonation constants were determined by pH-potentiometric and (1)H NMR titrations. Several vanadium(IV) and vanadium(V) complexes of these and other related ligands were prepared and characterized in solution and in the solid state.
View Article and Find Full Text PDFThe preparations of 1,4,7-(NHPhSiMe(2))(3)-1,4,7-triazacyclononane (H(3)N(3)-tacn) and its lithium and sodium derivatives are described. The X-ray structure of the THF adduct of the lithium derivative, Li(3)N(3)-tacn(THF)(2), shows that one of the macrocycle pendant arms is bent to allow the coordination of the its lithium ion to two tacn amines. In solution, a fluxional process makes all the pending arms magnetically equivalent.
View Article and Find Full Text PDFA new chlorocuprate(II), [(C(2)H(5))(4)N](2)Cu(5)Cl(12), was prepared by reaction of CuCl(2).2H(2)O and (C(2)H(5))(4)NCl in 1,1,2-trichloroethane-ethanol followed by water-ethanol evaporation. The crystal structure, solved by single-crystal X-ray diffraction at room temperature, was found to be triclinic, space group P&onemacr;, with cell parameters a = 8.
View Article and Find Full Text PDF