Perylenequinones (PQs) from bambusicolous Shiraia fungi serve as excellent photosensitizers for photodynamic therapy. However, the lower yield of PQ production in mycelium cultures is an important bottleneck for their clinical application. Light has long been recognized as a pivotal regulatory signal for fungal secondary metabolite biosynthesis.
View Article and Find Full Text PDFHypocrellin A (HA) is an excellent perylenequinone photosensitizer from Shiraia fruiting bodies. A dominant bacterium Pseudomonas fulva SB1 in the fruiting body was found to promote HA biosynthesis. The bacterial LPS were purified and the O-specific polysaccharide (OPS) consisted of rhamnose (Rha), galactose (Gal) and N-acetyl-galactosamine (GalNAc) with an average molecular weight of 282.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
October 2023
Hypocrellin A (HA), a fungal perylenequinone from bambusicolous Shiraia species, is a newly developed photosensitizer for photodynamic therapy in cancer and other infectious diseases. The lower yield of HA is an important bottleneck for its biomedical application. This study is the first report of the enhancement of HA production in mycelium culture of Shiraia sp.
View Article and Find Full Text PDFBackground: Perylenequinones from Shiraia fruiting bodies are excellent photosensitizers and widely used for anti-cancer photodynamic therapy (PDT). The lower yield of Shiraia perylenequinones becomes a significant bottleneck for their medical application. Branched-chain amino acids (BCAAs) not only serve as important precursors for protein synthesis, but also are involved in signaling pathway in cell growth and development.
View Article and Find Full Text PDF