Publications by authors named "Rui Pedro Paiva"

Article Synopsis
  • The Covid-19 pandemic made it hard for hospitals to care for patients with severe lung problems, especially in Intensive Care Units (ICUs).
  • This study looked at how sounds from patients’ lungs could help doctors understand their lung damage and predict how long they would stay in the ICU and their chances of survival.
  • The researchers found that certain lung sounds, like “squawks” and “crackles,” were important because they related to how patients were doing and could help doctors make better decisions about their care.
View Article and Find Full Text PDF

Classical machine learning techniques have dominated Music Emotion Recognition. However, improvements have slowed down due to the complex and time-consuming task of handcrafting new emotionally relevant audio features. Deep learning methods have recently gained popularity in the field because of their ability to automatically learn relevant features from spectral representations of songs, eliminating such necessity.

View Article and Find Full Text PDF

Background And Objective: Respiratory diseases are among the most significant causes of morbidity and mortality worldwide, causing substantial strain on society and health systems. Over the last few decades, there has been increasing interest in the automatic analysis of respiratory sounds and electrical impedance tomography (EIT). Nevertheless, no publicly available databases with both respiratory sound and EIT data are available.

View Article and Find Full Text PDF

Wheezes are adventitious respiratory sounds commonly present in patients with respiratory conditions. The presence of wheezes and their time location are relevant for clinical reasons, such as understanding the degree of bronchial obstruction. Conventional auscultation is usually employed to analyze wheezes, but remote monitoring has become a pressing need during recent years.

View Article and Find Full Text PDF
Article Synopsis
  • Respiratory diseases are a major global health issue, highlighting the importance of early diagnosis and monitoring for effective management.
  • Manual interpretation of lung sounds is time-consuming and requires a high level of expertise, making it difficult for healthcare providers.
  • A new hybrid neural model utilizing deep learning techniques has been proposed, which efficiently classifies lung sounds and achieves state-of-the-art results on a specialized dataset, showing promising accuracy and performance metrics.
View Article and Find Full Text PDF

Machine learning algorithms are progressively assuming important roles as computational tools to support clinical diagnosis, namely in the classification of pigmented skin lesions using RGB images. Most current classification methods rely on common 2D image features derived from shape, colour or texture, which does not always guarantee the best results. This work presents a contribution to this field, by exploiting the lesions' border line characteristics using a new dimension - depth, which has not been thoroughly investigated so far.

View Article and Find Full Text PDF

Mechanically ventilated patients typically exhibit abnormal respiratory sounds. Squawks are short inspiratory adventitious sounds that may occur in patients with pneumonia, such as COVID-19 patients. In this work we devised a method for squawk detection in mechanically ventilated patients by developing algorithms for respiratory cycle estimation, squawk candidate identification, feature extraction, and clustering.

View Article and Find Full Text PDF

Patients suffering from pulmonary diseases typically exhibit pathological lung ventilation in terms of homogeneity. Electrical Impedance Tomography (EIT) is a non- invasive imaging method that allows to analyze and quantify the distribution of ventilation in the lungs. In this article, we present a new approach to promote the use of EIT data and the implementation of new clinical applications for differential diagnosis, with the development of several machine learning models to discriminate between EIT data from healthy and nonhealthy subjects.

View Article and Find Full Text PDF

Medical image classification through learning-based approaches has been increasingly used, namely in the discrimination of melanoma. However, for skin lesion classification in general, such methods commonly rely on dermoscopic or other 2D-macro RGB images. This work proposes to exploit beyond conventional 2D image characteristics, by considering a third dimension (depth) that characterises the skin surface rugosity, which can be obtained from light-field images, such as those available in the SKINL2 dataset.

View Article and Find Full Text PDF

(1) Background: Patients with respiratory conditions typically exhibit adventitious respiratory sounds (ARS), such as wheezes and crackles. ARS events have variable duration. In this work we studied the influence of event duration on automatic ARS classification, namely, how the creation of the class (negative class) affected the classifiers' performance.

View Article and Find Full Text PDF

Lung sounds acquired by stethoscopes are extensively used in diagnosing and differentiating respiratory diseases. Although an extensive know-how has been built to interpret these sounds and identify diseases associated with certain patterns, its effective use is limited to individual experience of practitioners. This user-dependency manifests itself as a factor impeding the digital transformation of this valuable diagnostic tool, which can improve patient outcomes by continuous long-term respiratory monitoring under real-life conditions.

View Article and Find Full Text PDF

Objective: Over the last few decades, there has been significant interest in the automatic analysis of respiratory sounds. However, currently there are no publicly available large databases with which new algorithms can be evaluated and compared. Further developments in the field are dependent on the creation of such databases.

View Article and Find Full Text PDF

We propose WELCOME, an innovative integrated care platform using wearable sensors and smart cloud computing for Chronic Obstructive Pulmonary Disease (COPD) patients with co-morbidities. WELCOME aims to bring about a change in the reactive nature of the management of chronic diseases and its comorbidities, in particular through the development of a patient centred and proactive approach to COPD management. The aim of WELCOME is to support healthcare services to give early detection of complications (potentially reducing hospitalisations) and the prevention and mitigation of comorbidities (Heart Failure, Diabetes, Anxiety and Depression).

View Article and Find Full Text PDF