The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages.
View Article and Find Full Text PDFRapid and accessible testing was paramount in the management of the COVID-19 pandemic. Our university established KCL TEST: a SARS-CoV-2 asymptomatic testing programme that enabled sensitive and accessible PCR testing of SARS-CoV-2 RNA in saliva. Here, we describe our learnings and provide our blueprint for launching diagnostic laboratories, particularly in low-resource settings.
View Article and Find Full Text PDFThe appearance of new dominant variants of concern (VOC) of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) threatens the global response to the coronavirus disease 2019 (COVID-19) pandemic. Of these, the alpha variant (also known as B.1.
View Article and Find Full Text PDFEbola virus (EBOV) causes highly pathogenic disease in primates. Through screening a library of human interferon-stimulated genes (ISGs), we identified TRIM25 as a potent inhibitor of EBOV transcription-and-replication-competent virus-like particle (trVLP) propagation. TRIM25 overexpression inhibited the accumulation of viral genomic and messenger RNAs independently of the RNA sensor RIG-I or secondary proinflammatory gene expression.
View Article and Find Full Text PDFCOVID-19 vaccine design and vaccination rollout need to take into account a detailed understanding of antibody durability and cross-neutralizing potential against SARS-CoV-2 and emerging variants of concern (VOCs). Analyses of convalescent sera provide unique insights into antibody longevity and cross-neutralizing activity induced by variant spike proteins, which are putative vaccine candidates. Using sera from 38 individuals infected in wave 1, we show that cross-neutralizing activity can be detected up to 305 days pos onset of symptoms, although sera were less potent against B.
View Article and Find Full Text PDFThere is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek).
View Article and Find Full Text PDFObjectives: To analyse nosocomial transmission in the early stages of the coronavirus 2019 (COVID-19) pandemic at a large multisite healthcare institution. Nosocomial incidence is linked with infection control interventions.
Methods: Viral genome sequence and epidemiological data were analysed for 574 consecutive patients, including 86 nosocomial cases, with a positive PCR test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the first 19 days of the pandemic.
Background: Lateral flow devices (LFDs) for rapid antigen testing are set to become a cornerstone of SARS-CoV-2 mass community testing, although their reduced sensitivity compared with PCR has raised questions of how well they identify infectious cases. Understanding their capabilities and limitations is, therefore, essential for successful implementation. We evaluated six commercial LFDs and assessed their correlation with infectious virus culture and PCR cycle threshold (Ct) values.
View Article and Find Full Text PDFAs SARS-CoV-2 variants continue to emerge globally, a major challenge for COVID-19 vaccination is the generation of a durable antibody response with cross-neutralizing activity against both current and newly emerging viral variants. Cross-neutralizing activity against major variants of concern (B.1.
View Article and Find Full Text PDFContaining the global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been an unprecedented challenge due to high horizontal transmissivity and asymptomatic carriage rates. Lateral flow device (LFD) immunoassays were introduced in late 2020 to detect SARS-CoV-2 infection in asymptomatic or presymptomatic individuals rapidly. While LFD technologies have been used for over 60 years, their widespread use as a public health tool during a pandemic is unprecedented.
View Article and Find Full Text PDFThere is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek).
View Article and Find Full Text PDFThe interaction of the SARS-CoV-2 Spike receptor binding domain (RBD) with the ACE2 receptor on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS-CoV-2 variants has revealed mutations arising in the RBD, the N-terminal domain (NTD) and S2 subunits of Spike.
View Article and Find Full Text PDFThe cellular entry of severe acute respiratory syndrome-associated coronaviruses types 1 and 2 (SARS-CoV-1 and -2) requires sequential protease processing of the viral spike glycoprotein. The presence of a polybasic cleavage site in SARS-CoV-2 spike at the S1/S2 boundary has been suggested to be a factor in the increased transmissibility of SARS-CoV-2 compared to SARS-CoV-1 by facilitating maturation of the spike precursor by furin-like proteases in the producer cells rather than endosomal cathepsins in the target. We investigate the relevance of the polybasic cleavage site in the route of entry of SARS-CoV-2 and the consequences this has for sensitivity to interferons (IFNs) and, more specifically, the IFN-induced transmembrane (IFITM) protein family that inhibit entry of diverse enveloped viruses.
View Article and Find Full Text PDFThere is a clear requirement for an accurate SARS-CoV-2 antibody test, both as a complement to existing diagnostic capabilities and for determining community seroprevalence. We therefore evaluated the performance of a variety of antibody testing technologies and their potential use as diagnostic tools. Highly specific in-house ELISAs were developed for the detection of anti-spike (S), -receptor binding domain (RBD) and -nucleocapsid (N) antibodies and used for the cross-comparison of ten commercial serological assays-a chemiluminescence-based platform, two ELISAs and seven colloidal gold lateral flow immunoassays (LFIAs)-on an identical panel of 110 SARS-CoV-2-positive samples and 50 pre-pandemic negatives.
View Article and Find Full Text PDFAn evaluation of a rapid portable gold-nanotechnology measuring SARS-CoV-2 IgM, IgA and IgG antibody concentrations against spike 1 (S1), spike 2 (S) and nucleocapsid (N) was conducted using serum samples from 74 patients tested for SARS-CoV-2 RNA on admission to hospital, and 47 historical control patients from March 2019. 59 patients were RNA(+) and 15 were RNA(-). A serum (±) classification was derived for all three antigens and a quantitative serological profile was obtained.
View Article and Find Full Text PDFCell Host Microbe
September 2014
Tetherin (BST2/CD317) restricts the release of enveloped viral particles from infected cells. Coupled to this virion retention, hominid tetherins induce proinflammatory gene expression via activating NF-κB. We investigated the events initiating this tetherin-induced signaling and show that physical retention of retroviral particles induces the phosphorylation of conserved tyrosine residues in the cytoplasmic tails of tetherin dimers.
View Article and Find Full Text PDFBackground: Type I interferon (IFN) treatment of some cells, including dendritic cells, macrophages and monocytic THP-1 cells, restricts HIV-1 infection and prevents viral cDNA accumulation. Sterile alpha motif and HD domain protein 1 (SAMHD1), a dGTP-regulated deoxynucleotide triphosphohydrolase, reduces HIV-1 infectivity in myeloid cells, likely by limiting dNTPs available for reverse transcription, and has been described as IFNα-inducible. Myeloid cell infection by HIV-1 is enhanced by HIV-2/SIVSM Vpx, which promotes SAMHD1 degradation, or by exogenous deoxyribonucleoside (dN) addition.
View Article and Find Full Text PDFThe Ig-like transcript (ILT) 7 is a surface molecule selectively expressed by human plasmacytoid dendritic cells (pDCs). ILT7 cross-linking suppresses pDC activation and type I IFN (IFN-I) secretion following TLR7/9 engagement. The bone marrow stromal cell Ag 2 (BST2, aka HM1.
View Article and Find Full Text PDFAntiviral proteins that recognize pathogen-specific or aberrantly located molecular motifs are perfectly positioned to act as pattern-recognition receptors and signal to the immune system. Here we investigated whether the interferon-induced viral restriction factor tetherin (CD317/BST2), which is known to inhibit HIV-1 particle release by physically tethering virions to the cell surface, has such a signaling role. We find that upon restriction of Vpu-defective HIV-1, tetherin acts as a virus sensor to induce NFκB-dependent proinflammatory gene expression.
View Article and Find Full Text PDFThe cellular protein tetherin is thought to act as a 'leash' that anchors many enveloped viruses to the plasma membrane and prevents their release. We found that replication of multiple strains of influenza A virus was generally insensitive to alteration of tetherin levels, as assessed by output titre or scanning electron microscopy of cell-associated virions. This included human, swine, avian and equine isolates, strains that form filamentous or spherical particles and viruses that lack the M2 or NS1 proteins.
View Article and Find Full Text PDFXenotropic murine leukemia virus-related virus (XMRV) is a recently discovered gammaretrovirus that has been linked to prostate cancer and chronic fatigue syndrome. This virus is therefore an important potential human pathogen and, as such, it is essential to understand its host cell tropism. Intriguingly, infectious virus has been recovered from patient-derived peripheral blood mononuclear cells.
View Article and Find Full Text PDFLSm1-7 complexes promote cellular mRNA degradation, in addition to translation and replication of positive-strand RNA viruses such as the Brome mosaic virus (BMV). Yet, how LSm1-7 complexes act on their targets remains elusive. Here, we report that reconstituted recombinant LSm1-7 complexes directly bind to two distinct RNA-target sequences in the BMV genome, a tRNA-like structure at the 3'-untranslated region and two internal A-rich single-stranded regions.
View Article and Find Full Text PDF