Maple syrup urine disease (MSUD) is an inherited metabolic disorder biochemically characterized by the accumulation of branched-chain amino acids (BCAAs) and their branched-chain keto acids (BCKAs) in blood and other tissues. Neurological dysfunction is usually present in the affected patients, but the mechanisms of brain damage in this disease are not fully understood. Considering that brain energy metabolism seems to be altered in MSUD, the main objective of this study was to investigate the in vitro effect of BCAAs and BCKAs on creatine kinase activity, a key enzyme of energy homeostasis, in brain cortex of young rats.
View Article and Find Full Text PDFMaple syrup urine disease (MSUD) is a metabolic disorder biochemically characterized by the accumulation of branched-chain alpha-amino acids (BCAA) and their branched-chain alpha-keto acids (BCKA) in blood and tissues. Neurological dysfunction is usually present in the patients, but the mechanisms of brain damage in this disease are far from be understood. The main objective of this study was to investigate the mechanisms by which BCAA inhibit creatine kinase activity, a key enzyme of energy homeostasis, in the brain cortex of 21-day-old Wistar rats.
View Article and Find Full Text PDFMaple syrup urine disease (MSUD) is a metabolic disorder biochemically characterized by the accumulation of branched-chain amino acids (BCAA) and their branched-chain keto acids (BCKA) in blood and tissues. Neurological dysfunction is usually present in the patients, but the pathophysiology of brain damage is still obscure. Considering that brain energy metabolism is possibly altered in MSUD, the main objective of this study was to determine creatine kinase activity in the brain of rats subjected to acute and chronic administration of leucine.
View Article and Find Full Text PDF