Publications by authors named "Rui Daniel S Prediger"

Article Synopsis
  • Several mechanisms of Parkinson's disease (PD) are unclear, and current treatments are ineffective; however, a process called SUMOylation might offer new benefits.
  • Researchers knocked down a specific protein (SENP3) in a rodent model, increasing SUMO-2/3 conjugation, and observed improvements in cognitive and motor functions after MPTP exposure.
  • The study suggests that enhancing SUMO-2/3 conjugation could be a promising therapeutic approach to address the cognitive and motor difficulties associated with PD.
View Article and Find Full Text PDF

SUMOylation is a post-translational modification essential for various biological processes. SUMO proteins bind to target substrates in a three-step enzymatic pathway, which is rapidly reversible by the action of specific proteases, known as SENPs. Studies have shown that SUMOylation is dysregulated in several human disorders, including neurodegenerative diseases that are characterized by the progressive loss of neurons, mitochondrial dysfunction, deficits in autophagy, and oxidative stress.

View Article and Find Full Text PDF

The Spontaneously Hypertensive Rat (SHR) has been proposed as a good model to study the pathways related to neurodegenerative diseases and glucose intolerance. Our research group developed the SLA16 (SHR.LEW-Anxrr16) congenic strain, which is genetically identical to the SHR strain, except for a locus on chromosome 4 (DGR).

View Article and Find Full Text PDF

Epidemiological studies have indicated hypercholesterolemia in midlife as a risk factor for dementia in later life, bringing cholesterol to the forefront of Alzheimer's disease research. Herein, we modeled mild hypercholesterolemia in mice to evaluate biochemical and behavioral alterations linked to hypercholesterolemia. Swiss mice were fed a high fat/cholesterol diet (20 % fat and 1.

View Article and Find Full Text PDF

Early symptoms of Alzheimer's disease (AD) have been attributed to amyloid-β (Aβ) toxicity. The pathophysiology of AD is complex and involves several different biochemical pathways, including defective Aβ protein metabolism, neuroinflammation, oxidative processes, and mitochondrial dysfunction. In the current study, we assessed the molecular mechanisms, mainly the modifications in the activity of mitochondrial complexes, whereby the association of folic acid and α-tocopherol protects mice against the Aβ-induced neurotoxicity.

View Article and Find Full Text PDF

The interaction between genes and environment seems to be relevant for the development of Attention Deficit/Hyperactivity Disorder (ADHD), one of the most prevalent childhood psychiatric diseases. The occurrence of ADHD is typically associated with poor academic performance, probably reflecting learning difficulties and/or cognitive impulsiveness. The inbred Spontaneously Hypertensive Rats (SHR) strain has often been considered as an animal model of ADHD, since they 'naturally' display the main ADHD symptomatology.

View Article and Find Full Text PDF