Publications by authors named "Rui A R Boaventura"

The metalloids arsenic (As) and antimony (Sb) belong to the pnictogen group of the periodic table; they share many characteristics, including their toxic and carcinogenic properties; and rank as high-priority pollutants in the United States and the European Union. Adsorption is one of the most effective techniques for removing both elements and desorption, for further reuse, is a part of the process to make adsorption more sustainable and feasible. This review presents the current state of knowledge on arsenic and antimony desorption from exhausted adsorbents previously used in water treatment, that has been reported in the literature.

View Article and Find Full Text PDF

The search for low-cost technologies for arsenic removal from water is in high demand due to its human toxicity, even at low concentrations. Adsorption can be a cost-effective water treatment technique if applied with inexpensive materials. Arsenic continuous removal by adsorption onto an alternative modified biosorbent, iron-coated cork granulates (ICG), was investigated in this work.

View Article and Find Full Text PDF

Population growth, industrialization, urbanization, and agriculture lead to a decrease in the availability of clean water. Coagulation/flocculation is one of the most common operations in water, urban wastewater, and industrial effluents treatment systems. Usually, this process is achieved using conventional coagulants that have their performance affected by pH, are poorly biodegradable, produce a huge volume of sludge, and are associated with degenerative diseases.

View Article and Find Full Text PDF

Antimony is present in water by natural causes but is also mobilized in the environment by anthropogenic activities, particularly mining. Considering its toxicological behavior, antimony removal from contaminated groundwater and mine effluents is necessary. In this work, Sb(III) and Sb(V) removal from aqueous solution was studied using a resin prepared from pine bark tannins.

View Article and Find Full Text PDF

The occurrence of pnictogens, namely phosphorus, arsenic, and antimony, can be observed in soils, sediments and mining areas, and their coexistence requires a multifaceted approach to the design of adsorption systems to maximize their simultaneous removal efficiency. Therefore, this work aims to provide an extensive literature review of P, As, and Sb adsorption in multicomponent systems and the statistical treatment of the quantitative results. Binary As-P systems have been the most studied in the literature.

View Article and Find Full Text PDF

In this study, O and O/UVC processes were evaluated for the treatment of landfill leachate after biological nitrification/denitrification, coagulation, or their combinations. The O-driven stage efficiency was assessed by the removal of color, organic matter (dissolved organic carbon (DOC) and chemical oxygen demand (COD)), and biodegradability increase (Zahn-Wellens test). Also, fluorescence excitation-emission matrix (EEM) and size exclusion chromatography coupled with OC detector (SEC-OCD) analysis were carried out for each strategy.

View Article and Find Full Text PDF

This study focuses on the influence of major dissolved constituents naturally found in waters intended for human consumption on bromate (BrO) reduction by heterogeneous photocatalysis. The individual and combined effect of chloride (Cl), bicarbonate/carbonic acid (HCO/HCO), nitrate (NO), sulphate (SO) and humic acids (HAs) on BrO reduction was evaluated in synthetic waters (SWs). Additionally, freshwaters (FWs) from a drinking water treatment plant (DWTP) were tested and directly compared to SWs.

View Article and Find Full Text PDF

This work presents a disruptive approach to promote highly-efficient photo-Fenton process at neutral pH under continuous mode operation. The system consists of a tube-in-tube membrane reactor designed for continuous-flow titration of low iron doses to the annular reaction zone (ARZ). A concentrated acidic ferrous ion (Fe) solution is fed by the lumen-side of the membrane, permeating through the membrane pores (inside-out mode), being dosed and uniformly delivered to the membrane shell-side.

View Article and Find Full Text PDF

The assessment of multicomponent adsorption of pentavalent metalloids is important since they are often found together in groundwaters and mining runoff. For this purpose, adsorption of As(V), Sb(V) and P(V) onto iron-coated cork granulates was studied in binary and ternary systems. Data from equilibrium and kinetic studies revealed that uptake of these contaminants is a multilayer, heterogeneous process well described by Freundlich, extended Freundlich and Elovich models.

View Article and Find Full Text PDF

The remediation of a real textile wastewater aiming its reuse in the textile industry was carried out by integrating two processes: (i) a chemical or electrochemical advanced oxidation process (AOP or EAOP) based on Fenton's reaction for organics degradation, and (ii) a cation exchange process using marine macroalgae for removal of the iron acting in the Fenton's reaction based processes. Four AOPs/EAOPs at acidic pH 2.8 were tested: Fenton, photo-Fenton with ultraviolet A (UVA) radiation (PF/UVA), electro-Fenton (EF) and photoelectro-Fenton with UVA radiation (PEF/UVA).

View Article and Find Full Text PDF

The enzyme l-asparaginase (ASNase) presents effective antineoplastic properties used for acute lymphoblastic leukemia treatment besides their potential use in the food sector to decrease the acrylamide formation. Considering their applications, the improvement of this enzyme's properties by efficient immobilization techniques is in high demand. Carbon nanotubes are promising enzyme immobilization supports, since these materials have increased surface area and effective capacity for enzyme loading.

View Article and Find Full Text PDF

This study focuses on the development of a treatment train for a leachate from a hazardous industrial waste landfill (HIWL) previously treated by: (i) catalytic oxidation with hydrogen peroxide (HO) for sulphide and sulphite conversion into oxidized sulphur species, including sulphate, and (ii) chemical precipitation of sulphate as barite. The complete treatment line counted on four more stages: (iii) 1 biological oxidation for removal of biodegradable organic compounds and nitrogen species, (iv) coagulation with ferric chloride (coagulant dose of 100 mg Fe L, pH 2.8) for removal of a fraction of recalcitrant organics and suspended solids, (v) photo-Fenton oxidation using ultraviolet A (UVA) radiation (PF-UVA) (pH 2.

View Article and Find Full Text PDF

In this work, the application of ozone-driven processes for the treatment of mature landfill leachate was investigated by testing different system setups. As a first approach, ozonation (O-only) was tested, using a porous ceramic diffuser combined with a bubble column (BC), and the best operational conditions were established for leachate treatment (initial pH = 9.0; inlet ozone dose = 18 mg O/min).

View Article and Find Full Text PDF

Biodigested coffee processing wastewater (CPW) presents a high organic load and does not meet the limits imposed by legislation (namely in Brazil) for discharge into water bodies. Anaerobic digestion generally cannot provide a satisfactory organic matter reduction in CPW as a significant fraction of recalcitrant compounds still persists in the treated effluent. So, this study aims to find alternative ways to remove refractory organic compounds from this wastewater in order to improve the biodegradability and reduce the toxicity, which will allow its recirculation back into the anaerobic digester.

View Article and Find Full Text PDF

The use of cork granules for cleaning up crude oil or oil derivative spills and further oil recovery appears as a promising option due to their unique properties, which allow a high oil sorption capacity, low water pickup and excellent reuse. The present work reports the effect of oil viscosity on cork sorption capacity by using five types of oils (lubricating oil, 5.7 g g; heavy oil, 4.

View Article and Find Full Text PDF

Anaerobic digestion of crude glycerol from biodiesel production is a feasible way for methane production. However, crude glycerol (CG) contains impurities, such as long-chain fatty acids (LCFA) that can inhibit methanogenic microorganisms. Ultrasound promotes the hydrolysis of LCFA and deagglomerates the microorganisms in biological flocs.

View Article and Find Full Text PDF

The main goal of this study was to evaluate the removal of bromate from drinking water using a heterogeneous photocatalytic mili-photoreactor, based on NETmix technology. The NETmix mili-reactor consists of a network of channels and chambers imprinted in a back slab made of acrylic (AS) or stainless steel (SSS) sealed, through mechanical compression and o-rings, with an UVA-transparent front borosilicate glass slab (BGS). A plate of UVA-LEDs was placed above the BGS window.

View Article and Find Full Text PDF

Biosorption is known as an effective way to clean-up water from organic and inorganic contaminants and has also emerged as a promising technology to recover critical substances. Tannins are renewable materials, coming from multiple vegetable sources. A variety of biosorbents have been developed from tannins, including tannin resins, rigid foams, composites with mesoporous silica, cellulose, collagen, and magnetic adsorbents.

View Article and Find Full Text PDF

Angola is one of the countries with a high rate of waterborne diseases, due to the scarcity and poor quality of water for human consumption. The watercourses are receptors of many effluents, mainly domestic sewage, due to a precarious or inexistent sanitation system and a small number of wastewater treatment plants. Therefore, this study aims: (i) to evaluate the water quality (physicochemical and microbiological parameters) of three Angolan rivers (Kwanza, Bengo and Dande) in locations where water is used as drinking water or abstracted for human consumption; (ii) to develop a new water quality index able to quantitatively express the water quality in those sites; and (iii) to assess the spatial distribution of water pollution through principal component analysis (PCA).

View Article and Find Full Text PDF

The present work evaluates ozone driven processes (O, O/UVC, O/TiO/UVA) in the NETmix mili-photoreactor, as a cost-effective alternative for the removal of volatile organic compounds (VOCs) from air streams, using n-decane as a model pollutant. The network of channels and chambers of the mili-photoreactor was coated with a TiO-P25 thin film, resulting in a catalyst coated surface per reactor volume of 990 m m. Ozone and n-decane streams were fed to alternate chambers of the mili-photoreactor, promoting a good contact between O/n-decane/catalyst.

View Article and Find Full Text PDF

This study focuses on the intensification of heterogeneous TiO photocatalysis for the removal of a contaminant of emerging concern (CEC), oxytetracycline (OTC), as a polishing step of urban wastewaters, using an innovative NETmix mili-photoreactor under UVA-LEDs illumination. The effect of catalyst coated surface per reactor volume and the illumination mechanism, back-side (BSI) or front-side (FSI) irradiation, on OTC oxidation were evaluated. For that, a thin film of photocatalyst was uniformly deposited on the front borosilicate slab (BS) (BSI mechanism; 333 m m) or on the network of channels and chambers imprinted in the back stainless-steel slab (SSS) (FSI mechanism; 989 m m) using a spray system.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on creating an effective multi-step treatment strategy specifically for leather tannery landfill leachate.
  • Initial treatment involved biological processes to remove biodegradable materials, followed by coagulation/flocculation to eliminate chromium and reduce organic pollutants.
  • Advanced oxidation processes were employed to further degrade stubborn pollutants, with the final stage ensuring the treated leachate met environmental discharge standards.
View Article and Find Full Text PDF

In the current study, a treatment train strategy for urban mature leachates, comprising biological and physicochemical processes, was tested for full legal compliance. The leachate presents a high organic and nitrogen content (1.1g C/L; 3.

View Article and Find Full Text PDF