Publications by authors named "Ruhong Zhou"

Connexins (Cxs) are fundamental in cell-cell communication, functioning as gap junction channels (GJCs) that facilitate solute exchange between adjacent cells and as hemichannels (HCs) that mediate solute exchange between the cytoplasm and the extracellular environment. Mutations in the GJB1 gene, which encodes Cx32, lead to X-linked Charcot-Marie-Tooth type 1 (CMTX1), a rare hereditary demyelinating disorder of the peripheral nervous system (PNS) without an effective cure or treatment. In Schwann cells, Cx32 HCs are thought to play a role in myelination by enhancing intracellular and intercellular Ca signaling, which is crucial for proper PNS myelination.

View Article and Find Full Text PDF

Introduction: Alcohol consumption and hepatitis B virus (HBV) infection are common risk factors for hepatocellular carcinoma (HCC). However, few studies have focused on elucidating the mechanisms of HCC with combined alcohol and HBV etiology.

Objectives: We aimed to investigate the molecular features of alcohol and HBV on HCC and to seek out potential therapeutic strategies.

View Article and Find Full Text PDF

As an emerging class of RNA molecules, circular RNAs play pivotal roles in various biological processes, thereby determining their three-dimensional (3D) structure is crucial for a deep understanding of their biological significances. Similar to linear RNAs, the development of computational methods for circular RNA 3D structure prediction is challenging, especially considering the inherent flexibility and potentially long length of circular RNAs. Here, we introduce an extension of our previous IsRNA2 model, named IsRNAcirc, to enable circular RNA 3D structure predictions through coarse-grained molecular dynamics simulations.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third leading cause of cancer deaths globally. More than 80% of HCC patients have a background of fibrosis or cirrhosis, which leads to changes in physical factors in tumor microenvironment (TME), such as increased stiffness, solid stress, fluid stresses and structural alterations in the extracellular matrix (ECM). In the past, the focus of cancer research has predominantly been on genetic and biochemical factors in the TME, and the critical role of physical factors has often been overlooked.

View Article and Find Full Text PDF

The mass transport behavior through nanoscale channels, greatly influenced by the structures and dynamics of nanoconfined water, plays an essential role in many biophysical processes. However, the dynamics of nanoconfined water under an external field and its effects are still not fully understood. Here, on the basis of molecular dynamics simulations, we theoretically show that the ionic current of [Bmim][PF6] through narrow pores in graphene membrane exhibits an ionic negative differential resistance effect-the ionic current decreases as the voltage increases over a certain threshold.

View Article and Find Full Text PDF

Background: The highly heterogeneity of the tumor microenvironment (TME) in hepatocellular carcinoma (HCC) results in diverse clinical outcomes and therapeutic responses. This study aimed to investigate potential intercellular crosstalk and its impact on clinical outcomes and therapeutic responses.

Methods: Single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST) and bulk RNA sequencing (RNA-seq) datasets were integrated to comprehensively analyze the intercellular interactions within the TME.

View Article and Find Full Text PDF
Article Synopsis
  • Research discovered that NF2 interacts with the calcium channel IP3R1 in malignant meningioma cells, and this interaction is crucial for NF2's role in promoting calcium release, leading to cell death (apoptosis).
  • A lack of NF2 decreased calcium release and allowed resistance to apoptosis, which could be reversed by restoring wild-type NF2, but not by certain truncated forms, highlighting NF2's role in tumor development and offering insights for targeted drug screening.
View Article and Find Full Text PDF

The cAMP receptor proteins (CRPs) play a critical role in bacterial environmental adaptation by regulating global gene expression levels via cAMP binding. Here, we report the structure of DdrI, a CRP family protein from . Combined with biochemical, kinetic, and molecular dynamics simulations analyses, our results indicate that DdrI adopts a DNA-binding conformation in the absence of cAMP and can form stable complexes with the target DNA sequence of classical CRPs.

View Article and Find Full Text PDF

The accumulation of amyloid-β (Aβ) peptides is a major hallmark of Alzheimer's disease (AD) and plays a crucial role in its pathogenesis. Particularly, the structured oligomeric species rich in β-sheet formations were implicated in neuronal organelle damage. Addressing this formidable challenge requires identifying candidates capable of inhibiting peptide aggregation or disaggregating preformed oligomers for effective antiaggregation-based AD therapy.

View Article and Find Full Text PDF

Tuft cells are a group of rare epithelial cells that can detect pathogenic microbes and parasites. Many of these cells express signaling proteins initially found in taste buds. It is, however, not well understood how these taste signaling proteins contribute to the response to the invading pathogens or to the recovery of injured tissues.

View Article and Find Full Text PDF
Article Synopsis
  • Current targeted therapies for pancreatic cancer have limited success, highlighting the need for new treatment options due to factors like the digestive organ expansion factor (DEF) and its role in tumor growth.
  • The study utilizes both laboratory and live organism analyses to show that high DEF levels are linked to poor patient survival and that removing DEF slows tumor growth.
  • The research also introduces peptide-031, a compound designed to interfere with the harmful interaction between DEF and p65, showing significant potential in reducing tumor proliferation in both laboratory and living models.
View Article and Find Full Text PDF

The surface patterning in natural systems has exhibited appreciable functional advantages for life activities, which serve as inspiration for the design of artificial counterparts to achieve functions such as directional liquid transport at the nanoscale. Here, we propose a patterned two-dimensional (2D) in-plane heterostructure with a triangle-shaped hexagonal boron nitride (hBN) track embedded in graphene nanosheets, which can achieve unidirectional and self-propelled transport of nanodroplets carrying various biomolecules such as DNA, RNA, and peptides. Our extensive MD simulations show that the wettability gradient on the patterned heterostructure can drive the motion of nanodroplet with an instantaneous acceleration, which also permits long-distance transport (>100 nm) at the microsecond time scale.

View Article and Find Full Text PDF

Background And Objective: Barrett's esophagus (BE) is a precancerous condition that has the potential to develop into esophageal cancer (EC). Currently, there is a wide range of management options available for individuals at different pathological stages in Barrett's esophagus (BE). However, there is currently a lack of knowledge regarding their comparative efficacy.

View Article and Find Full Text PDF

Living organisms ranging from bacteria to animals have developed their own ways to accumulate and store phosphate during evolution, in particular as the polyphosphate (polyP) granules in bacteria. Degradation of polyP into phosphate is involved in phosphorus cycling, and exopolyphosphatase (PPX) is the key enzyme for polyP degradation in bacteria. Thus, understanding the structure basis of PPX is crucial to reveal the polyP degradation mechanism.

View Article and Find Full Text PDF

Cancer cell-killing by CD8+ T cells demands effective tumor antigen presentation by human leukocyte antigen class I (HLA-I) molecules. Screening and designing highly immunogenic neoantigens require quantitative computations to reliably predict HLA-peptide binding affinities. Here, with all-atom molecular dynamics (MD) simulations and free energy perturbation (FEP) methods, we design a collection of antigenic peptide candidates through in silico mutagenesis studies on immunogenic neoantigens, yielding enhanced binding affinities to HLA-B*44:02.

View Article and Find Full Text PDF

Bacteria have evolved various response systems to adapt to environmental stress. A protease-based derepression mechanism in response to DNA damage was characterized in Deinococcus, which is controlled by the specific cleavage of repressor DdrO by metallopeptidase PprI (also called IrrE). Despite the efforts to document the biochemical, physiological, and downstream regulation of PprI-DdrO, the upstream regulatory signal activating this system remains unclear.

View Article and Find Full Text PDF

Accumulating evidence suggests that cancer-associated fibroblast (CAF) macroautophagy/autophagy is crucial in tumor development and may be a therapeutic target for pancreatic ductal adenocarcinoma (PDAC). However, the role of CAF autophagy during immune surveillance and cancer immunotherapy is unclear. The present study revealed that the inhibition of CAF autophagy suppresses tumor development in immune-deficient xenografts.

View Article and Find Full Text PDF

Protocell fitness under extreme prebiotic conditions is critical in understanding the origin of life. However, little is known about protocell's survival and fitness under prebiotic radiations. Here we present a radioresistant protocell model based on assembly of two types of coacervate droplets, which are formed through interactions of inorganic polyphosphate (polyP) with divalent metal cation and cationic tripeptide, respectively.

View Article and Find Full Text PDF

As a major neuron type in the brain, the excitatory neuron (EN) regulates the lifespan in C. elegans. How the EN acquires senescence, however, is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • * The study identifies that a specific anaerobic microbe can cause tuft cell growth in the colon, and the microbe's byproducts prompt these cells to release an immune molecule called interleukin-25 (IL-25).
  • * Disabling certain genes and using specific inhibitors can hinder tuft cell responses, indicating that taste signaling plays a crucial role in recognizing infections, regulating cell survival, and maintaining the health of the colon's epithelial barrier.
View Article and Find Full Text PDF

For refining and designing protein structures, it is essential to have an efficient protein folding and docking framework that generates a protein 3D structure based on given constraints. In this study, we introduce OPUS-Fold3 as a gradient-based, all-atom protein folding and docking framework, which accurately generates 3D protein structures in compliance with specified constraints, such as a potential function as long as it can be expressed as a function of positions of heavy atoms. Our tests show that, for example, OPUS-Fold3 achieves performance comparable to pyRosetta in backbone folding and significantly better in side-chain modeling.

View Article and Find Full Text PDF

The tremendous success of immune checkpoint blockade (ICB) therapy has raised the great demand for the development of predictive biomarkers. A recent cancer genomic study suggested that human leukocyte antigen (HLA)-B*44:02 and HLA-B*15:01 alleles may act as potential biomarkers for ICB therapies, however, the underlying molecular mechanisms remain largely elusive. Here, we investigated the molecular origins of differential responses to ICB therapies for four representative HLA alleles: HLA-B*44:02, HLA-B*15:01, HLA-B*07:02, and HLA-B*53:01, using extensive all-atom molecular dynamics simulations.

View Article and Find Full Text PDF

Despite the accumulating evidence linking the development of Alzheimer's disease (AD) to the aggregation of Aβ peptides and the emergence of Aβ oligomers, the FDA has approved very few anti-aggregation-based therapies over the past several decades. Here, we report the discovery of an Aβ peptide aggregation inhibitor: an ultra-small nanodot called CN. CN nanodots alleviate aggregation-induced neuron cytotoxicity, rescue neuronal death, and prevent neurite damage in vitro.

View Article and Find Full Text PDF