An individual's disease risk is affected by the populations that they belong to, due to shared genetics and environmental factors. The study of fine-scale populations in clinical care is important for identifying and reducing health disparities and for developing personalized interventions. To assess patterns of clinical diagnoses and healthcare utilization by fine-scale populations, we leveraged genetic data and electronic medical records from 35,968 patients as part of the UCLA ATLAS Community Health Initiative.
View Article and Find Full Text PDFGroups of distantly related individuals who share a short segment of their genome identical-by-descent (IBD) can provide insights about rare traits and diseases in massive biobanks using IBD mapping. Clustering algorithms play an important role in finding these groups accurately and at scale. We set out to analyze the fitness of commonly used, fast and scalable clustering algorithms for IBD mapping applications.
View Article and Find Full Text PDFThe ability to identify segments of genomes identical-by-descent (IBD) is a part of standard workflows in both statistical and population genetics. However, traditional methods for finding local IBD across all pairs of individuals scale poorly leading to a lack of adoption in very large-scale datasets. Here, we present iLASH, an algorithm based on similarity detection techniques that shows equal or improved accuracy in simulations compared to current leading methods and speeds up analysis by several orders of magnitude on genomic datasets, making IBD estimation tractable for millions of individuals.
View Article and Find Full Text PDFSummary: Finding informative predictive features in high-dimensional biological case-control datasets is challenging. The Extreme Pseudo-Sampling (EPS) algorithm offers a solution to the challenge of feature selection via a combination of deep learning and linear regression models. First, using a variational autoencoder, it generates complex latent representations for the samples.
View Article and Find Full Text PDFWhole transcriptome studies typically yield large amounts of data, with expression values for all genes or transcripts of the genome. The search for genes of interest in a particular study setting can thus be a daunting task, usually relying on automated computational methods. Moreover, most biological questions imply that such a search should be performed in a multivariate setting, to take into account the inter-genes relationships.
View Article and Find Full Text PDF