Publications by authors named "Ruhangiz Taghi Kilani"

Bacterial infection and poor cell recruitment are among the main factors that prolong wound healing. To address this, a strategy is required that can prevent infection while promoting tissue repair. Here, we have created a silver nanoparticle-based hydrogel composite that is antibacterial and provides nutrients for cell growth, while filling cavities of various geometries in wounds that are difficult to reach with other dressings.

View Article and Find Full Text PDF

In full-thickness wounds, inflammation, lack of matrix deposition, and paucity of progenitor cells delay healing. As commercially available solid (sheet) scaffolds are unable to conform to wounds of varying shapes and sizes, we previously generated a nutritious, injectable, liquid skin substitute that can conform to wound topography. In combination with adipose micro-fragments as a viable source of progenitor cells, a composite, in situ forming skin substitute was tested for the treatment of silicon ring splinted full-thickness wounds in rats.

View Article and Find Full Text PDF

(1) Background: Developing a high-quality, injectable biomaterial that is labor-saving, cost-efficient, and patient-ready is highly desirable. Our research group has previously developed a collagen-based injectable scaffold for the treatment of a variety of wounds including wounds with deep and irregular beds. Here, we investigated the biocompatibility of our liquid scaffold in mice and compared the results to a commercially available injectable granular collagen-based product.

View Article and Find Full Text PDF

Lack of matrix deposition is one of the main factors that complicates the healing process of wounds. The aim of this study was to test the efficacy and safety of a liquid dermal scaffold, referred to as MeshFill (MF) that can fill the complex network of tunnels and cavities which are usually found in chronic wounds and hence improve the healing process. We evaluated in vitro and in vivo properties of a novel liquid dermal scaffold in a delayed murine full-thickness wound model.

View Article and Find Full Text PDF

Hypertrophic scars are associated with prolonged extracellular matrix (ECM) production, aberrant ECM degradation and high tissue cellularity. Routinely used antifibrotic strategies aim to reduce ECM deposition and enhance matrix remodeling. Our previous study investigating the antifibrotic effects of indoleamine2, 3 dioxygenase (IDO) led to the identification of kynurenine (Kyn) as an antiscarring agent.

View Article and Find Full Text PDF

Upon release from keratinocytes, 14-3-3 sigma (also known as stratifin) acts on the dermal fibroblast and modulates its production of extracellular matrix proteins. Subsequent to the recent identification as a receptor responsible for stratifin-mediated matrix turnover in dermal fibroblasts, aminopeptidase N has been implicated in the regulation of epidermal-dermal communication and expression of key matrix proteases and adhesion molecules. In light of the growing importance of aminopeptidase N in modulation of the fibroblast phenotype, the present study evaluates the potential of targeting the ectoenzyme in cutaneous repair, and demonstrates that neutralization of aminopeptidase N led to acceleration of wound closure.

View Article and Find Full Text PDF

Termination of wound healing requires a fine balance between collagen deposition and its hydrolysis. To dissect the underlying control mechanisms for this process, we established a keratinocyte/fibroblast co-culture system and subsequently demonstrated more than a 10-fold increase in collagenase expression in fibroblasts co-cultured with keratinocytes relative to that of control cells. This finding was further confirmed in fibroblasts grown in a keratinocyte/fibroblast collagen-GAG gel.

View Article and Find Full Text PDF