Here we demonstrate the use of multiple Si nanochannel (NC) or nanograting (NG) instead of the conventional single nanochannel or nanowire design in biosensors. The NG devices can significantly reduce device-to-device variation, and improve device performance, e.g.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is an emerging clinical modality for the treatment of a variety of diseases. Most photosensitizers are hydrophobic and poorly soluble in water. Many new nanoplatforms have been successfully established to improve the delivery efficiency of PS drugs.
View Article and Find Full Text PDFLow-doped silicon multi-nanowire field effect transistors with high ON/OFF ratio over 10(7) and a low subthreshold swing of 60-120 mV dec(-1) are fabricated using lithographic semiconductor processes. The use of multi-nanowires instead of a single nanowire as sensing elements has shown improved device uniformity and stability in buffer solutions. The device stability is further improved with surface silanization and biasing with a solution gate rather than a backgate.
View Article and Find Full Text PDFChemical functionalization of silicon oxide (SiO(2)) surfaces with silane molecules is an important technique for a variety of device and sensor applications. Quality control of self-assembled monolayers (SAMs) is difficult to achieve because of the lack of a direct measure for newly formed interfacial Si-O bonds. Herein we report a sensitive measure of the bonding interface between the SAM and SiO(2), whereby the longitudinal optical (LO) phonon mode of SiO(2) provides a high level of selectivity for the characterization of newly formed interfacial bonds.
View Article and Find Full Text PDFSuperparamagnetic iron oxide (SPIO) nanoparticles are widely used in magnetic resonance imaging (MRI) as versatile ultra-sensitive nanoprobes for cellular and molecular imaging of cancer. In this study, we report a one-step procedure for the surface functionalization of SPIO nanoparticles with a lung cancer-targeting peptide. The hydrophobic surfactants on the as-synthesized SPIO are displaced by the peptide containing a poly(ethylene glycol)-tethered cysteine residue through ligand exchange.
View Article and Find Full Text PDF