Publications by authors named "Ruggero Ferrazza"

The success of antifungal therapies is often hindered by the limited number of available drugs. To close the gap in the antifungal pipeline, the search of novel leads is of primary importance, and here the exploration of neglected plants has great promise for the discovery of new principles. Through bioassay-guided isolation, uliginosin B and five new dimeric acylphloroglucinols (uliginosins C-D, and 3'prenyl uliginosins B-D), besides cembrenoids, have been isolated from the lipophilic extract of .

View Article and Find Full Text PDF
Article Synopsis
  • An amendment to the original paper has been published.
  • Readers can find the amendment through a link provided at the top of the paper.
  • This update likely contains important revisions or additional information regarding the original content.
View Article and Find Full Text PDF

Anti-angiogenic therapy triggers metabolic alterations in experimental and human tumors, the best characterized being exacerbated glycolysis and lactate production. By using both Liquid Chromatography-Mass Spectrometry (LC-MS) and Nuclear Magnetic Resonance (NMR) analysis, we found that treatment of ovarian cancer xenografts with the anti-Vascular Endothelial Growth Factor (VEGF) neutralizing antibody bevacizumab caused marked alterations of the tumor lipidomic profile, including increased levels of triacylglycerols and reduced saturation of lipid chains. Moreover, transcriptome analysis uncovered up-regulation of pathways involved in lipid metabolism.

View Article and Find Full Text PDF

Heterozygous mutations of the lysosomal enzyme glucocerebrosidase (GBA1) represent the major genetic risk for Parkinson's disease (PD), while homozygous GBA1 mutations cause Gaucher disease, a lysosomal storage disorder, which may involve severe neurodegeneration. We have previously demonstrated impaired autophagy and proteasomal degradation pathways and mitochondrial dysfunction in neurons from GBA1 knockout (gba1) mice. We now show that stimulation with physiological glutamate concentrations causes pathological [Ca] responses and delayed calcium deregulation, collapse of mitochondrial membrane potential and an irreversible fall in the ATP/ADP ratio.

View Article and Find Full Text PDF

Skeletal muscle is composed of different myofiber types that preferentially use glucose or lipids for ATP production. How fuel preference is regulated in these post-mitotic cells is largely unknown, making this issue a key question in the fields of muscle and whole-body metabolism. Here, we show that microRNAs (miRNAs) play a role in defining myofiber metabolic profiles.

View Article and Find Full Text PDF

Direct coupling of thin-layer chromatography (TLC) with matrix-assisted laser desorption ionization (MALDI) mass spectrometry allows fast and detailed characterization of a large variety of analytes. The use of this technique, however, presents great challenges in semiquantitative applications because of the complex phenomena occurring at the TLC surface. In our laboratory, we recently observed that the ion intensities of several alkali adduct ions were significantly different between the top and interior layer of the TLC plate.

View Article and Find Full Text PDF

Motivation: Labelling experiments in biology usually make use of isotopically enriched substrates, with the two most commonly employed isotopes for metabolism being H and C. At the end of the experiment some metabolites will have incorporated the labelling isotope, to a degree that depends on the metabolic turnover. In order to propose a meaningful biological interpretation, it is necessary to estimate the amount of labelling, and one possible route is to exploit the fact that MS isotopic patterns reflect the isotopic distributions.

View Article and Find Full Text PDF

Mutations in LRRK2 gene cause inherited Parkinson's disease (PD) and variations around LRRK2 act as risk factor for disease. Similar to sporadic disease, LRRK2-linked cases show late onset and, typically, the presence of proteinaceous inclusions named Lewy bodies (LBs) in neurons. Recently, defects on ceramide (Cer) metabolism have been recognized in PD.

View Article and Find Full Text PDF

Vanillin (4-hydroxy-3-methoxybenzaldehyde) is a phenolic aldehyde with limited solubility in water; in this work, we investigate its self-aggregation, as well as its complexation equilibria with β-cyclodextrin by using nuclear magnetic resonance (NMR) and vibrational spectroscopy. In particular, diffusion-ordered NMR (DOSY) measurements allowing to detect diffusional changes caused by aggregation/inclusion phenomena lead to a reliable estimate of the equilibrium constants of these processes, while Raman spectroscopy was used to further characterize some structural details of vanillin self-aggregates and inclusion complexes. Although the self-association binding constant of vanillin in water was found to be low (K(a) ∼10), dimeric species are not negligible within the investigated range of concentration (3-65 mM); on the other hand, formation of β-cyclodextrin self-aggregates was not detected by DOSY measurements on aqueous solutions of β-cyclodextrin at different concentrations (2-12 mM).

View Article and Find Full Text PDF