Publications by authors named "Ruggeri F"

The probability of gas escapes from steel pipelines due to different types of corrosion is studied with real failure data from an urban gas distribution network. Both the design and maintenance of the network are considered, identifying and estimating (in a Bayesian framework) an elementary multinomial model in the first case, and a more sophisticated non-homogeneous Poisson process in the second case. Special attention is paid to the elicitation of the experts' opinions.

View Article and Find Full Text PDF

Generative Bayesian Computation (GBC) methods are developed to provide an efficient computational solution for maximum expected utility (MEU). We propose a density-free generative method based on quantiles that naturally calculates expected utility as a marginal of posterior quantiles. Our approach uses a deep quantile neural estimator to directly simulate distributional utilities.

View Article and Find Full Text PDF

Amyloid polymorphism is a hallmark of almost all amyloid species, yet the mechanisms underlying the formation of amyloid polymorphs and their complex architectures remain elusive. Commonly, two main mesoscopic topologies are found in amyloid polymorphs characterized by non-zero Gaussian and mean curvatures: twisted ribbons and helical fibrils, respectively. Here, a rich heterogeneity of configurations is demonstrated on insulin amyloid fibrils, where protofilament packing can occur, besides the common polymorphs, also in a combined mode forming mixed-curvature polymorphs.

View Article and Find Full Text PDF

The ability to control the location of nanoscale objects in liquids is essential for fundamental and applied research from nanofluidics to molecular biology. To overcome their random Brownian motion, the electrostatic fluid trap creates local minima in potential energy by shaping electrostatic interactions with a tailored wall topography. However, this strategy is inherently static; once fabricated, the potential wells cannot be modulated.

View Article and Find Full Text PDF

Oligomeric assemblies of the amyloid β peptide (Aβ) have been investigated for over two decades as possible neurotoxic agents in Alzheimer's disease. However, due to their heterogeneous and transient nature, it is not yet fully established which of the structural features of these oligomers may generate cellular damage. Here, we study distinct oligomer species formed by Aβ40 (the 40-residue form of Aβ) in the presence of four different metal ions (Al, Cu, Fe, and Zn) and show that they differ in their structure and toxicity in human neuroblastoma cells.

View Article and Find Full Text PDF

Posterior polar annular choroidal dystrophy (PPACD) is a rare ocular disorder and presents as symmetric degeneration of the retinal pigment epithelium (RPE) and the underlying choriocapillaris, encircling the retinal vascular arcades and optic disc. This condition distinctively preserves the foveal region, optic disc, and the outermost regions of the retina. Despite its distinct clinical presentation, due to the infrequency of its occurrence and the limited number of reported cases, the pathophysiology, and the genetic foundations of PPACD are still largely uncharted.

View Article and Find Full Text PDF

Many proteins self-assemble to form amyloid fibrils, which are highly organized structures stabilized by a characteristic cross-β network of hydrogen bonds. This process underlies a variety of human diseases and can be exploited to develop versatile functional biomaterials. Thus, protein self-assembly has been widely studied to shed light on the properties of fibrils and their intermediates.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor symptoms such as tremors, rigidity, and bradykinesia. While the diagnosis of PD primarily relies on clinical assessments and neurological examination, there has been growing interest in exploring non-invasive imaging techniques to aid in early detection and monitoring of the disease. In recent years, retinal imaging has emerged as a promising tool for studying PD due to the close anatomical and functional similarities between the retina and the brain.

View Article and Find Full Text PDF

Background: The increasing demand for food and feed products is stretching the capacity of the food value chain to its limits. A key step for ensuring food safety is checking for mycotoxin contamination of wheat. However, this analysis is typically performed by rather complex and expensive chromatographic methods, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Sturge-Weber syndrome (SWS) is characterized by facial port-wine stains, leptomeningeal hemangiomas, and prominent ocular manifestations such as glaucoma and diffuse choroidal hemangiomas (DCHs). Imaging modalities are critical for diagnosing and longitudinally monitoring DCHs in SWS. Fundus photography is fundamental in assessing both eyes simultaneously, fluorescein angiography and indocyanine green angiography effectively map the retinal and choroidal circulation, and ultrasonography offers essential structural insights into the choroid and retina.

View Article and Find Full Text PDF

A wide range of macromolecules can undergo phase separation, forming biomolecular condensates in living cells. These membraneless organelles are typically highly dynamic, formed reversibly, and carry out essential functions in biological systems. Crucially, however, a further liquid-to-solid transition of the condensates can lead to irreversible pathological aggregation and cellular dysfunction associated with the onset and development of neurodegenerative diseases.

View Article and Find Full Text PDF

The ubiquitous occurrence of microplastics (MPs) in the environment and the use of plastics in packaging materials result in the presence of MPs in the food chain and exposure of consumers. Yet, no fully validated analytical method is available for microplastic (MP) quantification, thereby preventing the reliable estimation of the level of exposure and, ultimately, the assessment of the food safety risks associated with MP contamination. In this study, a novel approach is presented that exploits interactive artificial intelligence tools to enable automation of MP analysis.

View Article and Find Full Text PDF

Neurodegenerative diseases, such as Alzheimer's disease (AD), are associated with protein misfolding and aggregation into amyloid fibrils. Increasing evidence suggests that soluble, low-molecular-weight aggregates play a key role in disease-associated toxicity. Within this population of aggregates, closed-loop pore-like structures have been observed for a variety of amyloid systems, and their presence in brain tissues is associated with high levels of neuropathology.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers identified 37 cases of Streptococcus equi subspecies zooepidemicus infections in central Italy between November 2021 and May 2022.
  • Investigations revealed that unpasteurized fresh dairy products were the source of the outbreak.
  • The use of whole-genome sequencing allowed for early diagnosis, helping to prevent further spread of these potentially life-threatening infections.
View Article and Find Full Text PDF

Phase transitions of cellular proteins and lipids play a key role in governing the organisation and coordination of intracellular biology. The frequent juxtaposition of proteinaceous biomolecular condensates to cellular membranes raises the intriguing prospect that phase transitions in proteins and lipids could be co-regulated. Here we investigate this possibility in the ribonucleoprotein (RNP) granule-ANXA11-lysosome ensemble, where ANXA11 tethers RNP granule condensates to lysosomal membranes to enable their co-trafficking.

View Article and Find Full Text PDF

In the last decade, a large amount of data from vehicle location sensors has been generated due to the massification of GPS systems to track them. This is because these sensors usually include multiple variables such as position, speed, angular position of the vehicle, etc., and, furthermore, they are also usually recorded in very short time intervals.

View Article and Find Full Text PDF

Fundamental knowledge of the physical and chemical properties of biomolecules is key to understanding molecular processes in health and disease. Bulk and single-molecule analytical methods provide rich information about biomolecules but often require high concentrations and sample preparation away from physiologically relevant conditions. Here, we present the development and application of a lab-on-a-chip spray approach that combines rapid sample preparation, mixing, and deposition to integrate with a range of nanoanalytical methods in chemistry and biology, providing enhanced spectroscopic sensitivity and single-molecule spatial resolution.

View Article and Find Full Text PDF
Article Synopsis
  • - In 2019, a study was conducted in Abruzzo and Molise, Italy, to identify local mosquito species and understand the distribution of potential disease vectors based on a previous ecoregion classification.
  • - From 2019 to 2021, researchers monitored mosquitoes for two viruses, West Nile virus (WNV) and Usutu virus (USUV), collecting and testing mosquito samples via Real-time PCR; all 3046 pools tested negative for WNV.
  • - USUV was found in several mosquito pools, indicating an enzootic cycle maintained by species like Culex pipiens s.l. and Aedes caspius, highlighting the importance of ecoregions in identifying areas at higher risk for
View Article and Find Full Text PDF

Despite mass spectrometry (MS) being proven powerful for the characterization of synthetic polymers, its potential for the analysis of single particle microplastics (MPs) is yet to be fully disclosed. To date, MPs are regarded as ubiquitous contaminants, but the limited availability of techniques that enable full characterizations of MPs results in a lack of systematic data regarding their occurrence. In this study, an atmospheric solid analysis probe (ASAP) coupled to a compact quadrupole MS is proposed for the chemical analysis of single particle microplastics, while maintaining full compatibility with complementary staining and image analysis approaches.

View Article and Find Full Text PDF

Mutations in the TP53 gene are common in cancer with the R248Q missense mutation conferring an increased propensity to aggregate. Previous p53 aggregation studies showed that, at micromolar concentrations, protein unfolding to produce aggregation-prone species is the rate-determining step. Here we show that, at physiological concentrations, aggregation kinetics of insect cell-derived full-length wild-type p53 and p53R248Q are determined by a nucleation-growth model, rather than formation of aggregation-prone monomeric species.

View Article and Find Full Text PDF

Soluble α-synuclein aggregates varying in size, structure, and morphology have been closely linked to neuronal death in Parkinson's disease. However, the heterogeneity of different co-existing aggregate species makes it hard to isolate and study their individual toxic properties. Here, we show a reliable non-perturbative method to separate a heterogeneous mixture of protein aggregates by size.

View Article and Find Full Text PDF

Linear-bottlebrush-linear (LBBL) triblock copolymers are emerging systems for topologically-tunable elastic materials. In this paper, a new synthetic methodology is presented to synthesize LBBL polystyrene--bottlebrushpolydimethylsiloxane--polystyrene (PS--bbPDMS--PS) triblock copolymer the "grafting onto" approach where the precursors are individually synthesized through living anionic polymerization and selective coupling reaction. In this two-step approach, polystyrene--polymethylvinylsiloxane (PS--PMVS) diblock copolymer with a low dispersity couples with another living PS block to form PS--PMVS--PS triblock copolymer.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic prompted the scientific community to share timely evidence, also in the form of pre-printed papers, not peer reviewed yet.

Purpose: To develop an artificial intelligence system for the analysis of the scientific literature by leveraging on recent developments in the field of Argument Mining.

Methodology: Scientific quality criteria were borrowed from two selected Cochrane systematic reviews.

View Article and Find Full Text PDF

The composition of soluble toxic protein aggregates formed in vivo is currently unknown in neurodegenerative diseases, due to their ultra-low concentration in human biofluids and their high degree of heterogeneity. Here we report a method to capture amyloid-containing aggregates in human biofluids in an unbiased way, a process we name amyloid precipitation. We use a structure-specific chemical dimer, a Y-shaped, bio-inspired small molecule with two capture groups, for amyloid precipitation to increase affinity.

View Article and Find Full Text PDF