Publications by authors named "Rufini S"

Cancer cells may acquire resistance to stress signals and reprogram metabolism to meet the energetic demands to support their high proliferation rate and avoid death. Hence, targeting nutrient dependencies of cancer cells has been suggested as a promising anti-cancer strategy. We explored the possibility of killing breast cancer (BC) cells by modifying nutrient availability.

View Article and Find Full Text PDF

Self-handicapping strategies refer to the set of choices and attitudes adopted to minimize blame for failure and increase the value of success in achievement situations. This paper aims to describe the stages of construction and the psychometric analysis of a scale to measure the self-handicapping strategies of university students. In study 1, the major steps for the construction of the scales and initial results are reported.

View Article and Find Full Text PDF

Recent findings have demonstrated that mitochondria can be transferred between cells to control metabolic homeostasis. Although the mitochondria of brown adipocytes comprise a large component of the cell volume and undergo reorganization to sustain thermogenesis, it remains unclear whether an intercellular mitochondrial transfer occurs in brown adipose tissue (BAT) and regulates adaptive thermogenesis. Herein, we demonstrated that thermogenically stressed brown adipocytes release extracellular vesicles (EVs) that contain oxidatively damaged mitochondrial parts to avoid failure of the thermogenic program.

View Article and Find Full Text PDF

Radiation therapy is one of the most effective methods of tumor eradication; however, in some forms of neuroblastoma, radiation can increase the risk of secondary neoplasms, due to the ability of irradiated cells to transmit pro-survival signals to non-irradiated cells through vesicle secretion. The aims of this study were to characterize the vesicles released by the human neuroblastoma cell line SH-SY5Y following X-ray radiations and their ability to increase invasiveness in non-irradiated SH-SY5Y cells. We first purified the extracellular vesicles released by the SH-SY5Y cells following X-rays, and then determined their total amount, dimensions, membrane protein composition, and cellular uptake.

View Article and Find Full Text PDF

The increasing duration of space missions involves a progressively higher exposure of astronauts to cosmic rays, whose most hazardous component is made up of High-Atomic number and High-Energy (HZE) ions. HZE ions interact along their tracks with biological molecules inducing changes on living material qualitatively different from that observed after irradiation for therapeutic purposes or following nuclear accidents. HZE ions trigger in cells different responses initialized by DNA damage and mitochondria dysregulation, which cause a prolonged state of sterile inflammation in the tissues.

View Article and Find Full Text PDF
Article Synopsis
  • The authors discovered a citation error in PubMed regarding their article.
  • The name "Piergiorgio La Rosa" was incorrectly cited as "Rosa P."
  • The correct citation should reflect "La Rosa P," with "La Rosa" as the surname and "Piergiorgio" as the first name.
View Article and Find Full Text PDF

Decreased expression of mitochondrial frataxin (FXN) causes Friedreich's ataxia (FRDA), a neurodegenerative disease with type 2 diabetes (T2D) as severe comorbidity. Brown adipose tissue (BAT) is a mitochondria-enriched and anti-diabetic tissue that turns excess energy into heat to maintain metabolic homeostasis. Here we report that the FXN knock-in/knock-out (KIKO) mouse shows hyperlipidemia, reduced energy expenditure and insulin sensitivity, and elevated plasma leptin, recapitulating T2D-like signatures.

View Article and Find Full Text PDF

There is a growing interest in therapeutically targeting the inflammatory response that underlies age-related chronic diseases including obesity and type 2 diabetes. Through integrative small RNA sequencing, we show the presence of conserved plant miR159a and miR156c in dried nuts having high complementarity with the mammalian TNF receptor superfamily member 1a (Tnfrsf1a) transcript. We detected both miR159a and miR156c in exosome-like nut nanovesicles (NVs) and demonstrated that such NVs reduce Tnfrsf1a protein and dampen TNF-α signaling pathway in adipocytes.

View Article and Find Full Text PDF

Mesoangioblasts are outstanding candidates for stem-cell therapy and are already being explored in clinical trials. However, a crucial challenge in regenerative medicine is the limited availability of undifferentiated myogenic progenitor cells because growth is typically accompanied by differentiation. Here reversible myogenic-differentiation switching during proliferation is achieved by functionalizing the glass substrate with high-density ZnO nanowires (NWs).

View Article and Find Full Text PDF

Crohn's disease is an inflammatory bowel disease showing a high heterogeneity in phenotype and a strong genetic component. The treatment is complex, due to different severity of clinical parameters and to the fact that therapies only permit to control symptoms and to induce remission for short periods. Moreover, all categories of drugs present a great interindividual variability both in terms of efficacy and side effects appearance.

View Article and Find Full Text PDF

Objective: Rheumatoid Arthritis (RA) is a progressive autoimmune disease characterized by chronic joint inflammation and structural damage. Remission or at least low disease activity (LDA) represent potentially desirable goals of RA treatment. Single nucleotide polymorphisms (SNPs) in several genes might be useful for prediction of response to therapy.

View Article and Find Full Text PDF

Recently, a study has shown that a polymorphism in the region of MIR1279 modulates the expression of the TRAF3IP2 gene. Since polymorphisms in the TRAF3IP2 gene have been described in association with systemic lupus erithematosus (SLE) susceptibility and with the development of pericarditis, our aim is to verify if the MIR1279 gene variability could also be involved. The rs1463335 SNP, located upstream MIR1279 gene, was analyzed by allelic discrimination assay in 315 Italian SLE patients and 201 healthy controls.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a systemic autoimmune disease resulting in chronic inflammation of the synovium and consequent cartilage and bone erosion. RA is associated strongly with the presence of rheumatoid factor (RF), and consists of clinical subsets of anti-citrullinated protein antibody (ACPA)-positive and -negative patients. This study was designed to evaluate whether relevant single nucleotide polymorphisms (SNPs) associated with RA and other autoimmune disorders are related to RF, ACPA and clinical phenotype in a cohort of biologic drugs naive Italian RA patients; 192 RA patients and 278 age-matched healthy controls were included.

View Article and Find Full Text PDF

Niemann-Pick type C disease is an autosomal recessive storage disorder, characterized by abnormal sequestration of unesterified cholesterol within the late endolysosomal compartment of cells and accumulation of gangliosides and other sphingolipids. Progressive neurological deterioration and insurgence of symptoms like ataxia, seizure, and cognitive decline until severe dementia are pathognomonic features of the disease. Here, we studied synaptic plasticity phenomena and evaluated ERKs activation in the hippocampus of BALB/c NPC1-/- mice, a well described animal model of the disease.

View Article and Find Full Text PDF

Genetic factors exert an important role in determining Systemic Lupus Erythematosus (SLE) susceptibility, interplaying with environmental factors. Several genetic studies in various SLE populations have identified numerous susceptibility loci. From a clinical point of view, SLE is characterized by a great heterogeneity in terms of clinical and laboratory manifestations.

View Article and Find Full Text PDF

Stevens-Johnson syndrome and toxic epidermal necrolysis are severe, life-threatening drug reactions involving skin and membranes mucous, which are associated with significant morbidity and mortality and triggered, especially by drug exposure. Different studies have demonstrated that drug response is a multifactorial character and that the interindividual variability in this response depends on both environmental and genetic factors. The last ones have a relevant significance.

View Article and Find Full Text PDF

MicroRNAs are small single stranded molecules that play a crucial role in regulation of physiological and pathological processes. Recent studies showed that VKORC1 gene contains an highly evolutionary conserved binding site for mir-133. Moreover, in human hepatocytes mir-133 is constitutively co-expressed with VKORC1.

View Article and Find Full Text PDF

Background: Crohn's disease and ulcerative colitis are inflammatory bowel diseases involving a genetically determined inappropriate mucosal immune response towards luminal antigens, including resident bacterial flora. Recent studies identified susceptibility genes involved in autophagy.

Aims: We analyzed known autophagic loci (IRGM, ULK1 and AMBRA1) previously described as associated with inflammatory bowel diseases or with other autoimmune and/or inflammatory disorders in a sample of Italian inflammatory bowel diseases patients in order to confirm their possible involvement and relative contribution in the disease.

View Article and Find Full Text PDF

Steven-Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) are severe adverse drug reactions, characterized by extensive epidermal detachment and erosions of mucous membrane. SJS/TEN is one of the most serious adverse reactions to Nevirapine (NVP) treatment, commonly used in developing countries as first-line treatment of human immunodeficiency virus infection. In the last years TRAF3IP2 gene variants had been described as associated with susceptibility to several diseases such as psoriasis and psoriatic arthritis.

View Article and Find Full Text PDF

Background: Systemic lupus erythematosus (SLE) is an autoimmune disease with complex pathogenesis in which genes and environmental factors are involved. We aimed at analyzing previously identified loci associated with SLE or with other autoimmune and/or inflammatory disorders (STAT4, IL10, IL23R, IRAK1, PSORS1C1, HCP5, MIR146a, PTPN2, ERAP1, ATG16L1, IRGM) in a sample of Italian SLE patients in order to verify or confirm their possible involvement and relative contribution in the disease.

Materials And Methods: Two hundred thirty-nine consecutive SLE patients and 278 matched healthy controls were enrolled.

View Article and Find Full Text PDF

Diabetic polyneuropathy (DPN) and cardiovascular autonomic neuropathy (CAN) are common type 2 diabetes complications with a large inter-individual variability in terms of clinical manifestations and severity. Our aim was to evaluate a possible involvement of genetic polymorphisms in miRNA regions in the susceptibility to DPN and CAN. Nine polymorphisms in miRNA genes were studied in a sample of 132 type 2 diabetes patients (T2D) analysed for DPN and 128 T2D patients analysed for CAN.

View Article and Find Full Text PDF

Purpose: The aim of the present study was to investigate the genetic variability of VKORC1, CYP2C9 and CYP4F2 genes in patients who required a very low and high warfarin dose, in order to identify novel variants that could help to explain the particular extreme dose requirements.

Methods: Among patients followed and treated with warfarin at the Center of Haemostasis and Thrombosis of the PTV, we selected twelve patients showing a high divergence from warfarin standard doses required to achieve the therapeutic effect. All VKORC1, CYP2C9 and CYP4F2 coding regions, 3' and 5' UTR and exon/intron boundaries were analyzed by direct sequencing.

View Article and Find Full Text PDF

MicroRNAs are small single-stranded molecules that have emerged as important genomic regulators in different pathways. Different studies have shown that they are implicated in the metabolism and glucose homeostasis, and therefore, they could also be involved in the pathogenesis of metabolic disorders such as type 2 diabetes (T2DM). The aim of this study was to verify whether genetic variations in candidate microRNA (miRNA or miR) genes could contribute to T2DM susceptibility.

View Article and Find Full Text PDF

Ionizing radiation can induce DNA strand breaks' formation both through direct ionization and through induction of oxidative stress. The resistance to radiation is mostly associated with the efficacy of DNA repair system. The ionizing radiation damage response of human topoisomerase IB, that is the selective target of camptothecin and derivatives widely used for various cancers often in association of radiotherapy, has been investigated treating with 30 Gy of X-rays a Saccharomyces cerevisiae strain in which the endogenous topoisomerase IB, not essential in this organism, has been deleted and a similar strain which overexpresses the human enzyme.

View Article and Find Full Text PDF

Sphingomyelin is a major component of membrane rafts, and also is a precursor of many bioactive molecules. The sphingomyelin plays important biological roles and alterations of its metabolism are the basis of some genetic disorders such as the Niemann Pick disease. A complete understanding of its biological role is frustrated by the lack of efficient tools for its recognition in the cell.

View Article and Find Full Text PDF