Publications by authors named "Ruffel S"

Nitrate is the most abundant form of inorganic nitrogen in aerobic soils, serving both as a nutrient and a signaling molecule. Central to nitrate signaling in higher plants is the intricate balance between local and systemic signaling and response pathways. The interplay between local and systemic responses allows plants to regulate their global gene expression, metabolism, physiology, growth, and development under fluctuating nitrate availability.

View Article and Find Full Text PDF

A plant's response to external and internal nitrogen signals/status relies on sensing and signaling mechanisms that operate across spatial and temporal dimensions. From a comprehensive systems biology perspective, this involves integrating nitrogen responses in different cell types and over long distances to ensure organ coordination in real time and yield practical applications. In this prospective review, we focus on novel aspects of nitrogen (N) sensing/signaling uncovered using temporal and spatial systems biology approaches, largely in the model Arabidopsis.

View Article and Find Full Text PDF

In a context of climate change, deciphering signaling pathways driving plant adaptation to drought, changes in water availability, and salt is key. A crossing point of these plant stresses is their impact on plant water potential (Ψ), a composite physico-chemical variable reflecting the availability of water for biological processes such as plant growth and stomatal aperture. The Ψ of plant cells is mainly driven by their turgor and osmotic pressures.

View Article and Find Full Text PDF

Ectopic expression of defensins in plants correlates with their increased capacity to withstand abiotic and biotic stresses. This applies to Arabidopsis thaliana, where some of the seven members of the PLANT DEFENSIN 1 family (AtPDF1) are recognised to improve plant responses to necrotrophic pathogens and increase seedling tolerance to excess zinc (Zn). However, few studies have explored the effects of decreased endogenous defensin expression on these stress responses.

View Article and Find Full Text PDF

Peptides display a broad range of regulatory functions. Ormancey et al. recently identified an important new mechanism - complementary peptides (cPEPs) - that provide a versatile means to control cell functions.

View Article and Find Full Text PDF

Nutrient sensing and signaling are essential for adjusting growth and development to available resources. Deprivation of the essential mineral phosphorus (P) inhibits root growth. The molecular processes that sense P limitation to trigger early root growth inhibition are not known yet.

View Article and Find Full Text PDF

Nitrate, one of the main nitrogen (N) sources for crops, acts as a nutrient and key signaling molecule coordinating gene expression, metabolism, and various growth processes throughout the plant life cycle. It is widely accepted that nitrate-triggered developmental programs cooperate with hormone synthesis and transport to finely adapt plant architecture to N availability. Here, we report that nitrate, acting through its signaling pathway, promotes growth in Arabidopsis and wheat, in part by modulating the accumulation of gibberellin (GA)-regulated DELLA growth repressors.

View Article and Find Full Text PDF

Plants need to cope with strong variations of nitrogen availability in the soil. Although many molecular players are being discovered concerning how plants perceive NO3- provision, it is less clear how plants recognize a lack of nitrogen. Following nitrogen removal, plants activate their nitrogen starvation response (NSR), which is characterized by the activation of very high-affinity nitrate transport systems (NRT2.

View Article and Find Full Text PDF

In Arabidopsis (Arabidopsis thaliana), the High-Affinity Transport System (HATS) for root nitrate (NO3-) uptake depends mainly on four NRT2 NO3- transporters, namely NRT2.1, NRT2.2, NRT2.

View Article and Find Full Text PDF

Plant nutrient acquisition is tightly regulated by resource availability and metabolic needs, implying the existence of communication between roots and shoots to ensure their integration at the whole-plant level. Here, we focus on systemic signaling pathways controlling nitrogen (N) nutrition, achieved both by the root import of mineral N and, in legume plants, through atmospheric N fixation by symbiotic bacteria inside dedicated root nodules. We explore features conserved between systemic pathways repressing or enhancing symbiotic N fixation and the regulation of mineral N acquisition by roots, as well as their integration with other environmental factors, such as phosphate, light, and CO availability.

View Article and Find Full Text PDF
Article Synopsis
  • * The excessive use of nitrogen-rich fertilizers has negative economic and environmental effects, making it important to improve how plants uptake and metabolize nitrate for better efficiency.
  • * This review surveys significant developments in nitrate research over the past 30 years, covering areas like biochemistry and genomics, and aims to set a foundation for future inquiries into nitrate transport and regulation in plants.
View Article and Find Full Text PDF

Chromatin modification has gained increased attention for its role in the regulation of plant responses to environmental changes, but the specific mechanisms and molecular players remain elusive. Here, we show that the Arabidopsis () histone methyltransferase SET DOMAIN GROUP8 (SDG8) mediates genome-wide changes in H3K36 methylation at specific genomic loci functionally relevant to nitrate treatments. Moreover, we show that the specific H3K36 methyltransferase encoded by is required for canonical RNA processing, and that RNA isoform switching is more prominent in the deletion mutant than in the wild type.

View Article and Find Full Text PDF

Nitrogen (N) and phosphorus (P) are key macronutrients sustaining plant growth and crop yield and ensuring food security worldwide. Understanding how plants perceive and interpret the combinatorial nature of these signals thus has important agricultural implications within the context of (1) increased food demand, (2) limited P supply, and (3) environmental pollution due to N fertilizer usage. Here, we report the discovery of an active control of P starvation response (PSR) by a combination of local and long-distance N signaling pathways in plants.

View Article and Find Full Text PDF

Nutrient fluctuations are more a rule rather than an exception in the life of sessile organisms such as plants. Despite this constraint that adds up to abiotic and biotic stresses, plants are able to accomplish their life cycle thanks to an efficient signaling network that reciprocally controls nutrient acquisition and use with growth and development. The majority of nutrients are acquired by the root system where multiple local signaling pathways that rely on nutrient-sensing systems are implemented to direct root growth toward soil resources.

View Article and Find Full Text PDF

This study exploits time, the relatively unexplored fourth dimension of gene regulatory networks (GRNs), to learn the temporal transcriptional logic underlying dynamic nitrogen (N) signaling in plants. Our "just-in-time" analysis of time-series transcriptome data uncovered a temporal cascade of elements underlying dynamic N signaling. To infer transcription factor (TF)-target edges in a GRN, we applied a time-based machine learning method to 2,174 dynamic N-responsive genes.

View Article and Find Full Text PDF

Plants face temporal and spatial variation in nitrogen (N) availability. This includes heterogeneity in soil nitrate (NO) content. To overcome these constraints, plants modify their gene expression and physiological processes to optimize N acquisition.

View Article and Find Full Text PDF

This article comments on: Cochetel N, Escudié F, Cookson SJ, Dai Z, Vivin P, Bert P-F, Muñoz MS, Delrot S, Klopp C, Ollat N, Lauvergeat V. 2017. Root transcriptomic responses of grafted grapevine to heterogeneous N availability depend on rootstock genotype.

View Article and Find Full Text PDF

Plant specific GARP transcription factor family (made of ARR-B and G2-like) contains genes with very diverse in planta functions: nutrient sensing, root and shoot development, floral transition, chloroplast development, circadian clock oscillation maintenance, hormonal transport and signaling. In this work we review: first, their structural but distant relationships with MYB transcription factors, second, their role in planta, third, the diversity of their Cis-regulatory elements, fourth, their potential protein partners. We conclude that the GARP family may hold keys to understand the interactions between nutritional signaling pathways (nitrogen and phosphate at least) and development.

View Article and Find Full Text PDF

Plants form the basis of the food webs that sustain animal life. Exogenous factors, such as nutrients and sunlight, and endogenous factors, such as hormones, cooperate to control both the growth and the development of plants. We assessed how Arabidopsis thaliana integrated nutrient and hormone signaling pathways to control root growth and development by investigating the effects of combinatorial treatment with the nutrients nitrate and ammonium; the hormones auxin, cytokinin, and abscisic acid; and all binary combinations of these factors.

View Article and Find Full Text PDF

The long-distance signaling network allowing a plant to properly develop its root system is crucial to optimize root foraging in areas where nutrients are available. Cytokinin is an essential element of the systemic signaling network leading to the enhancement of lateral root proliferation in areas where nitrate is available. Here, we explore more precisely: (i) which particular traits of lateral root growth (density and length of emerged lateral roots) are the targets of systemic signaling in a context of heterogeneous nitrate supply; and (ii) if the systemic signaling depends only on cytokinin or on a combination of several signalings.

View Article and Find Full Text PDF
Article Synopsis
  • Nitrogen and phosphorus are important nutrients that help plants grow, and researchers are studying how plants use these nutrients.
  • A specific protein called HRS1 helps plants respond to both nitrogen and phosphorus levels in the soil.
  • When there's not enough phosphorus, HRS1 slows down root growth, but only if there's also nitrogen present.
View Article and Find Full Text PDF

In most aerobic soils, nitrate (NO3(-)) is the main nitrogen source for plants and is often limiting for plant growth and development. To adapt to a changing environment, plants have developed complex regulatory mechanisms that involve short and long-range signalling pathways in response to both NO3(-) availability in the soil and other physiological processes like growth or nitrogen (N) and carbon (C) metabolisms. Over the past decade, transcriptomic approaches largely contributed to the identification of molecular elements involved in these regulatory mechanisms, especially at the level of root NO3(-)uptake.

View Article and Find Full Text PDF

Nitrate acts as a potent signal to control global gene expression in Arabidopsis. Using an integrative bioinformatics approach we identified TGA1 and TGA4 as putative regulatory factors that mediate nitrate responses in Arabidopsis roots. We showed that both TGA1 and TGA4 mRNAs accumulate strongly after nitrate treatments in roots.

View Article and Find Full Text PDF