Publications by authors named "Rufei Huang"

Cancer treatments, including cytotoxic therapy, often result in male infertility, necessitating the development of safe and effective strategies to preserve male reproductive potential during chemotherapy. Notably, our study uncovers the potential of repurposing riluzole, an FDA-approved drug for amyotrophic lateral sclerosis (ALS), in enhancing spermatogenesis. Hence, this research aims to explore the feasibility of utilizing riluzole to alleviate male infertility induced by busulfan (BSF), a commonly used chemotherapy drug.

View Article and Find Full Text PDF

As delayed parenthood becomes more prevalent, understanding age-related testosterone decline and its impact on male fertility has gained importance. However, molecular mechanisms concerning testicular aging remain largely undiscovered. Our study highlights that miR-143-3p, present in aging Sertoli cells (SCs), is loaded into extracellular vesicles (EVs), affecting Leydig cells (LCs) and germ cells, thus disrupting testicular tissue homeostasis and spermatogenesis.

View Article and Find Full Text PDF

The integrity of the skin barrier is essential for maintaining skin health, with the stratum corneum and filaggrin 2 (FLG-2) playing a key role. FLG-2 deficiency or mutation has been linked to diseases such as atopic dermatitis, while external stressors such as ultraviolet B (UVB) radiation further damage the epidermal barrier. This study investigated the effects of recombinant filaggrin (rFLG) on skin barrier function and UVB induced epidermal destruction.

View Article and Find Full Text PDF

The epidermal barrier is vital for protecting the skin from environmental stressors and ultraviolet (UV) radiation. Filaggrin-2 (FLG2), a critical protein in the stratum corneum, plays a significant role in maintaining skin barrier homeostasis. However, the precise role of FLG2 in mitigating the adverse effects of UV-induced barrier disruption and photoaging remains poorly understood.

View Article and Find Full Text PDF

The testes serve as the primary source of androgens and the site of spermatogenesis, with their development and function governed by hormonal actions via endocrine and paracrine pathways. Male fertility hinges on the availability of testosterone, a cornerstone of spermatogenesis, while follicle-stimulating hormone (FSH) signaling is indispensable for the proliferation, differentiation, and proper functioning of Sertoli and germ cells. This review covers the research on how androgens, FSH, and other hormones support processes crucial for male fertility in the testis and reproductive tract.

View Article and Find Full Text PDF

Endometrial injury poses a significant challenge in tissue regeneration, with type III collagen (COL III) playing a pivotal role in maintaining endometrial integrity and facilitating repair. Our study explored the utility of recombinant human type III collagen (RHC) as an intervention for endometrial damage. To address the challenges associated with the inherent instability and rapid degradation of COL III in vivo, we developed an RHC-HA hydrogel by conjugating RHC with hyaluronic acid (HA), thus ensuring a more stable and sustained delivery.

View Article and Find Full Text PDF

Chronic wound repair is a clinical treatment challenge. The development of multifunctional hydrogels is of great significance in the key aspects of treating chronic wounds, including reducing oxidative stress, promoting angiogenesis, and improving the natural remodeling of extracellular matrix and immune regulation. In this study, we prepared a composite hydrogel, sodium alginate (SA)@MnO/recombinant humanized collagen III (RHC)/mesenchymal stem cells (MSCs), composed of SA, MnO nanoparticles, RHC, and MSCs.

View Article and Find Full Text PDF

Due to the increasing trend of delayed childbirth, the age-related decline in male reproductive function has become a widely recognized issue. Sertoli cells (SCs) play a vital role in creating the necessary microenvironment for spermatogenesis in the testis. However, the mechanism underlying Sertoli cell aging is still unclear.

View Article and Find Full Text PDF

The ovary is a highly susceptible organ to senescence, and granulosa cells (GCs) have a crucial role in oocyte development promotion and overall ovarian function maintenance. As age advances, GCs apoptosis and dysfunction escalate, leading to ovarian aging. However, the molecular mechanisms underpinning ovarian aging remain poorly understood.

View Article and Find Full Text PDF

Increasing rates of male infertility require more experimental models to understand the mechanisms underlying male infertility.organoids hold unprecedented promise for this purpose; however, the development of organoids with tissue architecture similar to that of the testisremains a challenge. Here, we generated testicular organoids derived from testicular cells by combining a hanging drop culture and a rotation culture system.

View Article and Find Full Text PDF

Sertoli cells (SCs) are vital to providing morphological and nutritional support for spermatogenesis. Defects in SCs often lead to infertility. SCs transplantation is a promising potential strategy to compensate for SC dysfunction.

View Article and Find Full Text PDF

As the gate for sperm swimming into the female reproductive tract, cervix is full of cervical mucus, which plays an important role in sperm locomotion. The fact that sperm cannot pass through the cervical mucus-cervix microenvironment will cause the male infertility. However, how the sperm swim across the cervix microenvironment remains elusive.

View Article and Find Full Text PDF

In males, Leydig cells are the primary source of testosterone, which is necessary for testis development, masculinization, and spermatogenesis. Leydig cells are a valuable cellular model for basic research; thus, it is important to develop an improved method for isolation and purification of Leydig cells from testes. The available methods for Leydig cell isolation have some drawbacks, including the need for sophisticated instruments, high cost, tediousness, and time consumption.

View Article and Find Full Text PDF

In the mammalian testis, two distinct populations of Sertoli cells (SCs), the immature SCs (ISCs) and adult SCs (ASCs), play significant roles in regulating the development and function of Leydig cells. However, the effect of different SC types on the function of Leydig cells is poorly understood. Here, our study showed that miR-145-5p expression was significantly different in SCs at different stages, with the highest expression observed in ISCs.

View Article and Find Full Text PDF

Self-renewal and differentiation of spermatogonial stem cell (SSC) are critical for male fertility and reproduction, both of which are highly regulated by testicular microenvironment. Exosomal miRNAs have emerged as new components in intercellular communication. However, their roles in the differentiation of SSC remain unclear.

View Article and Find Full Text PDF