Publications by authors named "Ruey-Tarng Liu"

Article Synopsis
  • Manipulating mid-infrared light is essential for various applications like optical imaging and biosensing, but challenges in metamaterial fabrication and optical losses have hindered advancements.
  • This research focuses on using a biaxial two-dimensional van der Waals material, molybdenum trioxide, combined with patterned graphene to improve the control and focusing of mid-IR light through negative refraction.
  • The findings demonstrate that the proposed method can significantly enhance beam quality and intensity, reduce beam waist diameter, and enable precise directional guidance, paving the way for innovative uses in planar photonics.
View Article and Find Full Text PDF

Negative refraction has a wide range of applications in diverse fields such as imaging, sensing, and waveguides and typically entails the fabrication of intricate metamaterials endowed with hyperbolic features. In contrast to artificially engineered hyperbolic materials, natural van der Waals (vdW) materials are more accessible owing to their inherent strong in-plane covalent bonding and weak interlayer interactions. However, most vdW materials manifest uniaxial crystal properties, which restrict their behavior solely to out-of-plane hyperbolicity.

View Article and Find Full Text PDF