Symmetry control is essential for realizing unconventional properties, such as ferroelectricity, nonlinear optical responses, and complex topological order, thus it holds promise for the design of emerging quantum and photonic systems. Nevertheless, fast and reversible control of symmetry in materials remains a challenge, especially for nanoscale systems. Here, reversible symmetry changes are unveiled in colloidal lead chalcogenide quantum dots on picosecond timescales.
View Article and Find Full Text PDFThe application of grazing-incidence total X-ray scattering (GITXS) for pair distribution function (PDF) analysis using >50 keV X-rays from synchrotron light sources has created new opportunities for structural characterization of supported thin films with high resolution. Compared with grazing-incidence wide-angle X-ray scattering, which is only useful for highly ordered materials, GITXS/PDFs expand such analysis to largely disordered or nanostructured materials by examining the atomic pair correlations dependent on the direction relative to the surface of the supporting substrate. A characterization of nanocrystalline InO-derived thin films is presented here with in-plane-isotropic and out-of-plane-anisotropic orientational ordering of the atomic structure, each synthesized using different techniques.
View Article and Find Full Text PDFThe name of an author in the article by Weng et al. (2023) [J. Synchrotron Rad.
View Article and Find Full Text PDFFlat-field calibration of X-ray area detectors is a challenge due to the inability to generate an X-ray flat-field at the selected photon energy the beamline operates at, which has a strong influence on the measurement behavior of the detector. A method is presented in which a simulated flat-field correction is calculated without flat-field measurements. Instead, a series of quick scattering measurements from an amorphous scatterer is used to calculate a flat-field response.
View Article and Find Full Text PDFWe communicate a feasibility study for high-resolution structural characterization of biomacromolecules in aqueous solution from X-ray scattering experiments measured over a range of scattering vectors (q) that is approximately two orders of magnitude wider than used previously for such systems. Scattering data with such an extended q-range enables the recovery of the underlying real-space atomic pair distribution function, which facilitates structure determination. We demonstrate the potential of this method for biomacromolecules using several types of cyclodextrins (CD) as model systems.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2023
In situ synchrotron high-energy X-ray powder diffraction (XRD) is highly utilized by researchers to analyze the crystallographic structures of materials in functional devices (e.g. battery materials) or in complex sample environments (e.
View Article and Find Full Text PDFX-ray Compton spectroscopy is one of the few direct probes of the electron momentum distribution of bulk materials in ambient and operando environments. We report high-resolution inelastic x-ray scattering experiments with high momentum and energy transfer performed at a storage-ring-based high-energy x-ray light source facility using an x-ray transition-edge sensor (TES) microcalorimeter detector. The performance was compared with a silicon drift detector (SDD), an energy-resolving semiconductor detector, and Compton profiles were measured for lithium and cobalt oxide powders relevant to lithium-ion battery research.
View Article and Find Full Text PDFSequential infiltration synthesis (SIS) is a route to the precision deposition of inorganic solids in analogy to atomic layer deposition but occurs within (vs upon) a soft material template. SIS has enabled exquisite nanoscale morphological complexity in various oxides through selective nucleation in block copolymers templates. However, the earliest stages of SIS growth remain unresolved, including the atomic structure of nuclei and the evolution of local coordination environments, before and after polymer template removal.
View Article and Find Full Text PDFAtomic pair distribution function (PDF) analysis is the most powerful technique to study the structure of condensed matter on the length scale from short- to long-range order. Today, the PDF approach is an integral part of research on amorphous, nanocrystalline and disordered materials from bulk to nanoparticle size. Thin films, however, demand specific experimental strategies for enhanced surface sensitivity and sophisticated data treatment to obtain high-quality PDF data.
View Article and Find Full Text PDFThe temperature dependence of atomic structural evolution in liquid AgGa alloy has been studied using an in situ high energy x-ray diffraction (XRD) experiment combined with first-principles molecular dynamics (FPMD) simulations. The experimental data show a reversible structural crossover at the temperature of about 1050 K. Changes in both electrical resistivity and absolute thermoelectric power at about 1100 K strongly support the XRD results.
View Article and Find Full Text PDFThe molecular interactions of three biologically important galactocerebrosides have been studied in monolayers formed at the soft air/water interface as 2D model membranes. Highly surface-sensitive techniques as GIXD (grazing incidence X-ray diffraction), IRRAS (infrared reflection-absorption spectroscopy), and BAM (Brewster angle microscopy) have been used. The study reveals that small differences in the chemical structure have a relevant impact on the physical-chemical properties and intermolecular interactions.
View Article and Find Full Text PDFUnderstanding the interaction between surfaces and their surroundings is crucial in many materials-science fields, such as catalysis, corrosion, and thin-film electronics, but existing characterization methods have not been capable of fully determining the structure of surfaces during dynamic processes, such as catalytic reactions, in a reasonable time frame. We demonstrate an x-ray-diffraction-based characterization method that uses high-energy photons (85 kiloelectron volts) to provide unexpected gains in data acquisition speed by several orders of magnitude and enables structural determinations of surfaces on time scales suitable for in situ studies. We illustrate the potential of high-energy surface x-ray diffraction by determining the structure of a palladium surface in situ during catalytic carbon monoxide oxidation and follow dynamic restructuring of the surface with subsecond time resolution.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2010
Neutron and high-energy x-ray diffraction measurements have been performed on multi-component 55SiO(2)·10B(2)O(3)·25Na(2)O·5BaO·ZrO(2) borosilicate host glass loaded with 30 wt% UO(3). Both the traditional Fourier transformation technique and the reverse Monte Carlo simulation of the experimental data have been applied to get structural information. It was established that the basic network structure consists of tetrahedral SiO(4) units and of mixed tetrahedral BO(4) and trigonal BO(3) units, similar to the corresponding host glass.
View Article and Find Full Text PDFNeutron scattering measurements on a bilayer manganite near optimal doping show that the short-range polaron correlations are completely dynamic at high T, but then freeze upon cooling to a temperature T(*) approximately equal 310 K. This glass transition suggests that the paramagnetic/insulating state arises from an inherent orbital frustration that inhibits the formation of a long-range orbital- and charge-ordered state. Upon further cooling into the ferromagnetic-metallic state (T(C) = 114 K), where the polarons melt, the diffuse scattering quickly develops into a propagating, transverse optic phonon.
View Article and Find Full Text PDF