Atherosclerosis, the major underlying cause of cardiovascular disease, is believed to arise from the accumulation of low-density lipoprotein (LDL) in the arterial subendothelial space, ultimately leading to plaque formation. It is proposed that the accumulation of LDL is linked to its intrinsic aggregation propensity. Although the native LDL is not prone to aggregation, LDL(-), an electronegative LDL characterized in the plasma, has been shown to prime LDL aggregation in a domino-like behavior similar to amyloidogenic proteins.
View Article and Find Full Text PDFInfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the onset of COVID-19 have been linked to an increased risk of developing type 2 diabetes. While a variety of mechanisms may ultimately be responsible for the onset of type 2 diabetes under these circumstances, one mechanism that has been postulated involves the increased aggregation of human islet amyloid polypeptide (hIAPP) through direct interaction with SARS-CoV-2 viral proteins. Previous computational studies investigating this possibility revealed that a nine-residue peptide fragment known as SK9 (SFYVYSRVK) from the SARS-CoV-2 envelope protein can stabilize the native conformation of hIAPP by interacting with the N-terminal region of amylin.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
November 2024
Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid in various organs thereby obstructing their functions. Severe cases can lead to a systemic disorder called AA amyloidosis. Previous studies suggest that the N-terminal helix is the most amyloidogenic region of SAA.
View Article and Find Full Text PDFVapor-phase molecular simulation studies of aromatic compounds with five or more fluorine atoms on the ring reveal emission spectra characterized by S → πσ* and πσ*→S transitions. In this study, the absorption, excitation, and solvent-dependent emission spectra of fluorinated benzenes, including pentaflurophenyalanine (F5Phe), which is a potential marker for biochemical research, were collected and compared to the results of the simulation. Time-dependent self-consistent field (TD-SCF) density functional theory (DFT) calculations were performed to examine the nature of excited states and relevant photo-physical processes.
View Article and Find Full Text PDFEstrogens are a group of steroid compounds found in the human body that are eventually discharged and ultimately end up in sewer effluents. Since these compounds can potentially affect the endocrine system its detection and quantification in sewer water is important. In this study, estrogens such as estrone (E1), estradiol (E2), estriol (E3), and ethynylestradiol (EE2) were discriminated and quantitated using Raman spectroscopy.
View Article and Find Full Text PDFHuman islet amyloid polypeptide (hIAPP) is a 37-residue hormone that is co-stored and co-secreted with insulin. In type 2 diabetes, the polypeptide misfolds to form amyloid plaques in the pancreas. The self-assembly of hIAPP has been linked to the loss of insulin production and β-cell death.
View Article and Find Full Text PDFThis chapter includes information about the structure in equilibrium of the bioactive molecule hIAPP22-29 (NFGAILSS). The experimental structure was derived using X-ray and its 2D NOESY NMR experiments in d -DMSO and d-HFIP solvents. This molecule contains eight of the ten amino acids of the 20-29 region of the human islet amyloid polypeptide (hIAPP) often referred as the "amyloidogenic core.
View Article and Find Full Text PDFTwo α-cyanohydroxycinnamic acid positional isomers, α-cyano-4-hydroxycinnamic acid (CHCA4) and α-cyano-3-hydroxycinnamic acid (CHCA3), were characterized using Raman spectroscopy. We analyzed the implications of the collected Raman spectral shifts, and verified them through other spectroscopic techniques, to arrive at plausible three dimensional structures of CHCA3 and CHCA4. The positions of these groups were mapped by systematically analyzing the orientation and type of interactions functional groups make in each CHCA isomer.
View Article and Find Full Text PDFTriosephosphate isomerase (TIM) catalyzes the interconversion between dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (GAP), via an enediol(ate) intermediate. Determination of substrate population distribution in the TIM/substrate reaction mixture at equilibrium and characterization of the substrate-enzyme interactions in the Michaelis complex are ongoing efforts toward the understanding of the TIM reaction mechanism. By using isotope-edited difference Fourier transform infrared studies with unlabeled and C-labeled substrates at specific carbon(s), we are able to show that in the reaction mixture at equilibrium the keto DHAP is the dominant species and the populations of aldehyde GAP and enediol(ate) are very low, consistent with the results from previous X-ray structural and C NMR studies.
View Article and Find Full Text PDFHuman islet amyloid polypeptide (hIAPP), also known as amylin, is a 37 residue peptide hormone that is stored and co-secreted with insulin. hIAPP plays a pivotal role in type 2 diabetes and is the major component of amyloid deposits found in the pancreas of patients afflicted with the disease. The self-assembly of hIAPP and the formation of amyloid is linked to the death of insulin producing β-cells.
View Article and Find Full Text PDFLaser-induced temperature-jump relaxation spectroscopy was used to study the active site mobile-loop dynamics found in the binding of the NADH nucleotide cofactor and oxamate substrate mimic to lactate dehydrogenase in Bacillus stearothermophilus thermophilic bacteria (bsLDH). The kinetic data can be best described by a model in which NADH can bind only to the open-loop apoenzyme, oxamate can bind only to the bsLDH·NADH binary complex in the open-loop conformation, and oxamate binding is followed by closing of the active site loop preventing oxamate unbinding. The open and closed states of the loop are in dynamic equilibrium and interconvert on the submillisecond time scale.
View Article and Find Full Text PDFIn the present study, a comparative Raman vibrational analysis of alpha-cyano-4-hydroxycinnamic acid (4CHCA) and its derivative, alpha-cyano-3-hydroxycinnamic acid (3CHCA), was performed. The Raman spectra of the 4CHCA and 3CHCA in solid form were obtained and analyzed to determine differences between the two structurally similar derivatives. For comparison, the CHCA derivatives cyanocinnamic acid (CCA) and coumaric acid (CA) were also studied.
View Article and Find Full Text PDFA comprehensive investigation of peptides derived from the 22-29 region of human islet amyloid polypeptide (hIAPP) that contain phenylalanine analogs at position 23 with a variety of electron donating and withdrawing groups, along with heteroaromatic surrogates, has been employed to interrogate how π-electron distribution effects amyloid formation. Kinetic aggregation studies using turbidity measurements indicate that electron rich aromatic ring systems consistently abolish the amyloidogenic propensity of hIAPP(22-29). Electron poor systems modulate the rate of aggregation.
View Article and Find Full Text PDFLarge scale dynamics within the Michaelis complex mimic of Bacillus stearothermophilus thermophilic lactate dehydrogenase, bsLDH·NADH·oxamate, were studied with site specific resolution by laser-induced temperature jump relaxation spectroscopy with a time resolution of 20 ns. NADH emission and Trp emission from the wild type and a series of single-tryptophan bsLDH mutants, with the tryptophan positions different distances from the active site, were used as reporters of evolving structure in response to the rapid change in temperature. Several distinct dynamical events were observed on the millisecond to microsecond time scale involving motion of atoms spread over the protein, some occurring concomitantly or nearly concomitantly with structural changes at the active site.
View Article and Find Full Text PDFThe role aromatic amino acids play in the formation of amyloid is a subject of controversy. In an effort to clarify the contribution of aromaticity to the self-assembly of human islet amyloid polypeptide (hIAPP)22-29 , peptide analogs containing electron donating groups (EDGs) or electron withdrawing groups (EWGs) as substituents on the aromatic ring of Phe-23 at the para position have been synthesized and characterized using turbidity measurements in conjunction with Raman and fluorescence spectroscopy. Results indicate the incorporation of EDGs on the aromatic ring of Phe-23 virtually abolish the ability of hIAPP22-29 to form amyloid.
View Article and Find Full Text PDFA series of isotope edited IR measurements, both static as well as temperature jump relaxation spectroscopy, are performed on lactate dehydrogenase (LDH) to determine the ensemble of structures available to its Michaelis complex. There clearly has been a substantial reduction in the number of states available to the pyruvate substrate (as modeled by the substrate mimic, oxamate) and NADH when bound to protein compared to dissolved in solution, as determined by the bandwidths and positions of the critical C(2)═O band of the bound substrate mimic and the C(4)-H stretch of the NADH reduced nicotinamide group. Moreover, it is found that a strong ionic bond (characterized by a signature IR band discovered in this study) is formed between the carboxyl group of bound pyruvate with (presumably) Arg171, forming a strong "anchor" within the protein matrix.
View Article and Find Full Text PDFThe correlation of the UVRR nuW3 mode with the tryptophan chi(2,1) dihedral angle [Maruyama and Takeuchi (1995) J. Raman Spectrosc. 26, 319; Miura et al.
View Article and Find Full Text PDFDuring cell volume regulation, intracellular concentration changes occur in both inorganic and organic osmolytes in order to balance the extracellular osmotic stress and maintain cell volume homeostasis. Generally, salt and urea increase the Km's of enzymes and trimethylamine N-oxide (TMAO) counteracts these effects by decreasing Km's. The hypothesis to account for these effects is that urea and salt shift the native state ensemble of the enzyme toward conformers that are substrate-binding incompetent (BI), while TMAO shifts the ensemble toward binding competent (BC) species.
View Article and Find Full Text PDFAs for many enzymes, the enzymatic pathway of triosephosphate isomerase (TIM) includes the partially rate determining motion of an active site loop (loop 6, residues 166-176), which must remain closed during chemistry but must open just before product release. The motion of this loop was monitored using laser induced temperature-jump relaxation spectroscopy at nanosecond to millisecond time resolution. Trp168 in the hinge of the mobile loop served as a fluorophore reporter in a mutant of the yeast enzyme.
View Article and Find Full Text PDFRaman and NMR studies are performed to characterize the solution structures of complexes between heparin and a group of amidated acids, which act as delivery agents that facilitate the gastrointestinal absorption of orally administered heparin. At concentrations typically employed for the oral drug delivery of heparin, the contact points between heparin complexed with the delivery agents include points near the OH groups of heparin. The results suggest that heparin interacts rather nonspecifically with the amidated acids as monomers and with self-associated complexes of the delivery agents.
View Article and Find Full Text PDFThe spectroscopic and solution properties of a series of amidated acids (delivery agents), which promote the gastrointestinal absorption of USP heparin and other drugs that show poor oral bioavailability, are investigated using Raman and NMR spectroscopy. The results show evidence for self-association at low concentrations of delivery agents that increases as the concentration of the delivery agent is increased. The self-associate is characterized by ring-ring stacking interactions, and the best geometrical arrangement for the stacking is the parallel-shifted arrangement of the rings.
View Article and Find Full Text PDF