Dendritic cells (DCs) are crucial for initiating protective immune responses and have also been implicated in the generation and regulation of Foxp3 regulatory T cells (Treg cells). Here, we show that in the lamina propria of the small intestine, the alternative NF-κB family member RelB is necessary for the differentiation of cryptopatch and isolated lymphoid follicle-associated DCs (CIA-DCs). Moreover, single-cell RNA sequencing reveals a RelB-dependent signature in migratory DCs in mesenteric lymph nodes favoring DC-Treg cell interaction including elevated expression and release of the chemokine CCL22 from RelB-deficient conventional DCs (cDCs).
View Article and Find Full Text PDFSevere dengue infections are characterized by endothelial dysfunction shown to be associated with the secreted nonstructural protein 1 (sNS1), making it an attractive vaccine antigen and biotherapeutic target. To uncover the biologically relevant structure of sNS1, we obtained infection-derived sNS1 (isNS1) from dengue virus (DENV)-infected Vero cells through immunoaffinity purification instead of recombinant sNS1 (rsNS1) overexpressed in insect or mammalian cell lines. We found that isNS1 appeared as an approximately 250 kDa complex of NS1 and ApoA1 and further determined the cryoEM structures of isNS1 and its complex with a monoclonal antibody/Fab.
View Article and Find Full Text PDFMicroglial phagocytosis is an energetically demanding process that plays a critical role in the removal of toxic protein aggregates in Alzheimer's disease (AD). Recent evidence indicates that a switch in energy production from mitochondrial respiration to glycolysis disrupts this important protective microglial function and may provide therapeutic targets for AD. Here, we demonstrate that the translocator protein (TSPO) and a member of its mitochondrial complex, hexokinase-2 (HK), play critical roles in microglial respiratory-glycolytic metabolism and phagocytosis.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
August 2022
Pancreatic resident macrophages, a heterogeneous family of cells with distinct origins and phenotypes, are the main myeloid cells in exocrine and endocrine tissues. Adult exocrine F4/80 macrophages consist of three different subsets based on the embryonic marker Tim-4 and MHC II expression. Their frequencies shift during aging and obesity with the Tim-4MHCII fraction becoming the predominant subpopulation in the inter acinar stroma.
View Article and Find Full Text PDFViral respiratory infections cause substantial health and economic burden. There is a pressing demand for efficacious vaccination strategies and, therefore, a need for a better understanding of the mechanisms of action of novel potential adjuvants. Here we investigated the effect of a synthetic RIG-I agonist, the dsRNA hairpin 3p10LA9, on the activation of pulmonary myeloid cells.
View Article and Find Full Text PDFC-type lectin domain family 4, member a4 (Clec4a4) is a C-type lectin inhibitory receptor specific for glycans thought to be exclusively expressed on murine CD8α− conventional dendritic cells. Using newly generated Clec4a4-mCherry knock-in mice, we identify a subset of Clec4a4-expressing eosinophils uniquely localized in the small intestine lamina propria. Clec4a4+ eosinophils evinced an immunomodulatory signature, whereas Clec4a4− eosinophils manifested a proinflammatory profile.
View Article and Find Full Text PDFCirculating Ly6C monocytes often undergo cellular death upon exhaustion of their antibacterial effector functions, which limits their capacity for subsequent macrophage differentiation. This shrouds the understanding on how the host replaces the tissue-resident macrophage niche effectively during bacterial invasion to avert infection morbidity. Here, we show that proliferating transitional premonocytes (TpMos), an immediate precursor of mature Ly6C monocytes (MatMos), were mobilized into the periphery in response to acute bacterial infection and sepsis.
View Article and Find Full Text PDFLife Sci Alliance
January 2022
The gut immune system has evolved to co-exist in a mutually beneficial symbiotic relationship with its microflora. Here, using a germ-free fate-mapping mouse model, we provide clear insight into how the enteric commensals determine the kinetics of macrophage turnover. The microbiome density along the gastrointestinal tract defines the persistence of ontogenically diverse macrophages, with the highest numbers of the long-lived F4/80Tim4 macrophage subset in the less densely colonized small intestine.
View Article and Find Full Text PDFBrain microglia and border-associated macrophages (BAMs) display distinct spatial, developmental, and phenotypic features. Although at steady state, the origins of distinct brain macrophages are well-documented, the dynamics of their replenishment in neurodegenerative disorders remain elusive, particularly for activated CD11c microglia and BAMs. In this study, we conducted a comprehensive fate-mapping analysis of murine microglia and BAMs and their turnover kinetics during Alzheimer's disease (AD) progression.
View Article and Find Full Text PDFTissue-resident macrophages in white adipose tissue (WAT) dynamically adapt to the metabolic changes of their microenvironment that are often induced by excess energy intake. Currently, the exact contribution of these macrophages in obesity-driven WAT remodeling remains controversial. Here, using a transgenic CD169-DTR mouse strain, we provide new insights into the interplay between CD169 adipose tissue macrophages (ATMs) and their surrounding WAT microenvironment.
View Article and Find Full Text PDFDendritic cells residing in the skin represent a large family of antigen-presenting cells, ranging from long-lived Langerhans cells (LC) in the epidermis to various distinct classical dendritic cell subsets in the dermis. Through genetic fate mapping analysis and single-cell RNA-sequencing, we have identified a novel separate population of LC-independent CD207CD326 LC cells in the dermis that homed at a slow rate to the lymph nodes (LNs). These LC cells are long-lived and radio-resistant but, unlike LCs, they are gradually replenished by bone marrow-derived precursors under steady state.
View Article and Find Full Text PDFDisseminated candidiasis remains as the most common hospital-acquired bloodstream fungal infection with up to 40% mortality rate despite the advancement of medical and hygienic practices. While it is well established that this infection heavily relies on the innate immune response for host survival, much less is known for the protective role elicited by the tissue-resident macrophage (TRM) subsets in the kidney, the prime organ for persistence. Here, we describe a unique CD169 TRM subset that controls growth and inflammation during acute systemic candidiasis.
View Article and Find Full Text PDFSolitary intestinal lymphoid tissues such as cryptopatches (CPs) and isolated lymphoid follicles (ILFs) constitute steady-state activation hubs containing group 3 innate lymphoid cells (ILC3) that continuously produce interleukin (IL)-22. The outer surface of CPs and ILFs is demarcated by a poorly characterized population of CD11c cells. Using genome-wide single-cell transcriptional profiling of intestinal mononuclear phagocytes and multidimensional flow cytometry, we found that CP- and ILF-associated CD11c cells were a transcriptionally distinct subset of intestinal cDCs, which we term CIA-DCs.
View Article and Find Full Text PDFDelayed wound healing is commonly associated with diabetes. It may lead to amputation and death if not treated in a timely fashion. Limited treatments are available partially due to the poor understanding of the complex disease pathophysiology.
View Article and Find Full Text PDFTalin critically controls integrin-dependent cell migration, but its regulatory role in skin dendritic cells (DCs) during inflammatory responses has not been investigated. Here, we show that talin1 regulates not only integrin-dependent Langerhans cell (LC) migration, but also MyD88-dependent Toll-like receptor (TLR)-stimulated DC activation. Talin1-deficient LCs failed to exit the epidermis, resulting in reduced LC migration to skin-draining lymph nodes (sdLNs) and defective skin tolerance induction, while talin1-deficient dermal DCs unexpectedly accumulated in the dermis despite their actomyosin-dependent migratory capabilities.
View Article and Find Full Text PDFAdipose tissue-resident F4/80 macrophages (ATMs) are the main leukocyte population found in the visceral adipose tissue (VAT). These macrophages comprise several phenotypically distinct subpopulations that rapidly shift in abundance during obesity-induced tissue remodeling. Here we used a fate-mapping approach in mouse models to determine the developmental origins and the differential turnover kinetics of ATMs in lean and obese adipose tissue.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
December 2019
β-Cells respond to peripheral insulin resistance by first increasing circulating insulin during diabetes. Islet remodeling supports this compensation, but its drivers remain poorly understood. Infiltrating macrophages have been implicated in late-stage type 2 diabetes, but relatively little is known on islet resident macrophages, especially during compensatory hyperinsulinemia.
View Article and Find Full Text PDFPersonalized cancer vaccines hold promises for future cancer therapy. Targeting neoantigens is perceived as more beneficial compared to germline, non-mutated antigens. However, it is a practical challenge to identify and vaccinate patients with neoantigens.
View Article and Find Full Text PDFNaive CD4 T lymphocytes differentiate into various Th cell subsets following TCR binding to microbial peptide:MHC class II (p:MHCII) complexes on dendritic cells (DCs). The affinity of the TCR interaction with p:MHCII plays a role in Th differentiation by mechanisms that are not completely understood. We found that low-affinity TCRs biased mouse naive T cells to become T follicular helper (Tfh) cells, whereas higher-affinity TCRs promoted the formation of Th1 or Th17 cells.
View Article and Find Full Text PDFType 1 conventional CD103 dendritic cells (cDC1) contribute significantly to the cytotoxic T lymphocyte (CTL) response during influenza virus infection; however, the mechanisms by which cDC1s promote CTL recruitment and viral clearance are unclear. We demonstrate that cDC1 ablation leads to a deficient influenza-specific primary CD8 T cell response alongside severe pulmonary inflammation, intensifying susceptibility to infection. The diminished pulmonary CTL population is not only a consequence of reduced priming in the lymph node (LN), but also of dysregulated CD8 T cell egression from the LN and reduced CD8 T cell viability in the lungs.
View Article and Find Full Text PDFInflammation-induced disappearance of tissue-resident macrophages represents a key pathogen defense mechanism. Using a model of systemic blood-stage malaria, we studied the dynamics of tissue-resident macrophages in multiple organs to determine how they are depleted and refilled during the course of disease. We show that Plasmodium infection results in a transient loss of embryonically established resident macrophages prior to the parasitemia peak.
View Article and Find Full Text PDFCell ablation is a valuable complement to mutagenesis for experimentally defining specific cell functions in physiology and pathophysiology in small animal models. One of the most popular ablation strategies involves transgenic expression of a primate diphtheria toxin receptor (DTR) on murine cells that are otherwise resistant to the bacterial exotoxin. The efforts of many laboratories using the DTR approach over the years have yielded numerous valuable insights into specific cell functions.
View Article and Find Full Text PDFIn the steady state, tumors harbor several populations of dendritic cells (DCs) and myeloid cells that are key regulators of the intratumoral immune environment. Among these cells, migratory CD103 cross-presenting DCs are thought to be critical for tumor-specific CTL responses and tumor resistance. However, it is unclear whether this prominent role also extends to immunotherapy.
View Article and Find Full Text PDFVaccine-mediated cancer treatment is unlikely to induce long-term survival unless suppressive mechanisms are overcome. Given the success of antibody-mediated immune checkpoint blockade in relieving regulation of endogenous anti-tumor T cell responses in tumor-burdened hosts, we investigated whether checkpoint blockade could improve the efficacy of responses induced with a whole tumor-cell vaccine. We show that administration of a single dose of blocking antibody was sufficient to significantly enhance antitumor activity of the vaccine, inducing complete radiological regression of established intracranial tumors.
View Article and Find Full Text PDF