Publications by authors named "Ruediger Land"

The extent to which aging of the central auditory pathway impairs auditory perception in the elderly independent of peripheral cochlear decline is debated. To cause auditory deficits in normal hearing elderly, central aging needs to degrade neural sound representations at some point along the auditory pathway. However, inaccessible to psychophysical methods, the level of the auditory pathway at which aging starts to effectively degrade neural sound representations remains poorly differentiated.

View Article and Find Full Text PDF

Visual evoked potentials (VEP) allow the characterization of visual function in preclinical mouse models. Various methods exist to measure VEPs in mice, from non-invasive EEG, subcutaneous single-electrodes, and ECoG to fully invasive intracortical multichannel visual cortex recordings. It can be useful to acquire a global, topographical EEG-level characterization of visual responses previous to local intracortical microelectrode measurements in acute experimental settings.

View Article and Find Full Text PDF

Impaired temporal resolution of the central auditory system has long been suggested to contribute to speech understanding deficits in the elderly. However, it has been difficult to differentiate between direct age-related central deficits and indirect effects of confounding peripheral age-related hearing loss on temporal resolution. To differentiate this, we measured temporal acuity in the inferior colliculus (IC) of aged CBA/J and C57BL/6 mice, as a model of aging with and without concomitant hearing loss.

View Article and Find Full Text PDF

Background: Measuring visual evoked potentials (VEP) by means of EEG allows the quasi non-invasive assessment of visual function in mice. Such sensory phenotyping is important to screen for genetic or aging effects on vision in preclinical mouse models. Thus, a standardized EEG-like approach for the assessment of sensory evoked potentials in mice is desirable.

View Article and Find Full Text PDF

Congenital deafness not only affects the development of the auditory cortex, but also the interrelation between the visual and auditory system. For example, congenital deafness leads to visual modulation of the deaf auditory cortex in the form of cross-modal plasticity. Here we asked, whether congenital deafness additionally affects auditory modulation in the visual cortex.

View Article and Find Full Text PDF

In mice, the auditory brainstem response (ABR) is frequently used to assess hearing status in transgenic hearing models. The diagnostic value of the ABR depends on knowledge about the anatomical sources of its characteristic waves. Here, we studied the contribution of the inferior colliculus (IC) to the click-evoked scalp ABR in mice.

View Article and Find Full Text PDF

Unlabelled: Congenital sensory deprivation can lead to reorganization of the deprived cortical regions by another sensory system. Such cross-modal reorganization may either compete with or complement the "original" inputs to the deprived area after sensory restoration and can thus be either adverse or beneficial for sensory restoration. In congenital deafness, a previous inactivation study documented that supranormal visual behavior was mediated by higher-order auditory fields in congenitally deaf cats (CDCs).

View Article and Find Full Text PDF

Extracellular local field potentials (LFPs) and multiunit activity (MUA) reflect the spatially integrated activity of multiple neurons in a given cortical structure. In the cat and primate visual cortices, these signals exhibit selectivity for visual stimulus features, such as orientation, direction of motion or spatial frequency. In the mouse visual cortex, a model which has been increasingly used in visual neuroscience, the visual stimulus selectivity of population signals has not been examined in detail.

View Article and Find Full Text PDF

General anesthesia is not a uniform state of the brain. Ongoing activity differs between light and deep anesthesia and cortical response properties are modulated in dependence of anesthetic dosage. We investigated how anesthesia level affects cross-modal interactions in primary sensory cortex.

View Article and Find Full Text PDF