Publications by authors named "Ruediger Hell"

Over the past few decades, a close relationship between sulfur (S) and iron (Fe) in terms of functionality and nutrition was demonstrated in the tomato. However, very little is known about the regulatory mechanisms underlying S/Fe interactions. Recently, the potential role of citrate in plant adaptation to Fe deficiency and combined S and Fe deficiency has been described.

View Article and Find Full Text PDF

Cysteine biosynthesis is essential for translation and represents the entry point of reduced sulfur into plant metabolism. The two consecutively acting enzymes serine acetyltransferase (SAT) and O-acetylserine-thiol-lyase catalyse cysteine production and form the cysteine synthase complex, in which SAT is activated. Here we show that tobacco (Nicotiana tabacum) expressing active SAT in plastids (referred to as PSA lines) shows substantial cysteine accumulation in plastids.

View Article and Find Full Text PDF

Plants, unlike animals, respond to environmental challenges with comprehensive developmental transitions that allow them to cope with these stresses. Here we discovered that antagonistic activation of the Target of Rapamycin (TOR) kinase in Arabidopsis thaliana roots and shoots is essential for the nutrient deprivation-induced increase in the root-to-shoot ratio to improve foraging for mineral ions. We demonstrate that sulfate limitation-induced downregulation of TOR in shoots activates autophagy, resulting in enhanced carbon allocation to the root.

View Article and Find Full Text PDF

High-salinity stress represses plant growth by inhibiting various metabolic processes. In contrast to the well-studied mechanisms mediating tolerance to high levels of salt, the effects of low levels of salts have not been well studied. In this study, we examined the growth of plants under different NaCl concentrations.

View Article and Find Full Text PDF

In humans and plants, N-terminal acetylation plays a central role in protein homeostasis, affects 80% of proteins in the cytoplasm and is catalyzed by five ribosome-associated N-acetyltransferases (NatA-E). Humans also possess a Golgi-associated NatF (HsNAA60) that is essential for Golgi integrity. Remarkably, NAA60 is absent in fungi and has not been identified in plants.

View Article and Find Full Text PDF

N-terminal acetylation (NTA) is a prevalent protein modification in eukaryotes. In plants, the biological function of NTA remains enigmatic. The dominant -acetyltransferase (Nat) in Arabidopsis () is NatA, which cotranslationally catalyzes acetylation of ∼40% of the proteome.

View Article and Find Full Text PDF

N-terminal acetylation (NTA) is one of the most abundant protein modifications in eukaryotes. In humans, NTA is catalyzed by seven N-acetyltransferases (NatA-F and NatH). Remarkably, the plant Nat machinery and its biological relevance remain poorly understood, although NTA has gained recognition as a key regulator of crucial processes such as protein turnover, protein-protein interaction, and protein targeting.

View Article and Find Full Text PDF

Plants are major sulfur reducers in the global sulfur cycle. Sulfate, the major natural sulfur source in soil, is absorbed by plant roots and transported into plastids, where it is reduced and assimilated into Cys for further metabolic processes. Despite its importance, how sulfate is transported into plastids is poorly understood.

View Article and Find Full Text PDF

Plants close stomata when root water availability becomes limiting. Recent studies have demonstrated that soil-drying induces root-to-shoot sulfate transport via the xylem and that sulfate closes stomata. Here we provide evidence for a physiologically relevant signaling pathway that underlies sulfate-induced stomatal closure in Arabidopsis ().

View Article and Find Full Text PDF

Photoautotrophic organisms must efficiently allocate their resources between stress-response pathways and growth-promoting pathways to be successful in a constantly changing environment. In this study, we addressed the coordination of sulfur flux between the biosynthesis of the reactive oxygen species scavenger glutathione (GSH) and protein translation as one example of a central resource allocation switch. We crossed the Arabidopsis () GSH synthesis-depleted cadmium-sensitive mutant, which lacks glutamate cysteine (Cys) ligase, into the sulfite reductase mutant, which suffers from a significantly decreased flux of sulfur into Cys and, consequently, is retarded in growth.

View Article and Find Full Text PDF

Background: Drought is the most important environmental stress that limits crop yield in a global warming world. Despite the compelling evidence of an important role of oxidized and reduced sulfur-containing compounds during the response of plants to drought stress (e.g.

View Article and Find Full Text PDF

Mitochondria must maintain tight control over the electrochemical gradient across their inner membrane to allow ATP synthesis while maintaining a redox-balanced electron transport chain and avoiding excessive reactive oxygen species production. However, there is a scarcity of knowledge about the ion transporters in the inner mitochondrial membrane that contribute to control of membrane potential. We show that loss of MSL1, a member of a family of mechanosensitive ion channels related to the bacterial channel MscS, leads to increased membrane potential of Arabidopsis mitochondria under specific bioenergetic states.

View Article and Find Full Text PDF

Deprivation of mineral nutrients causes significant retardation of plant growth. This retardation is associated with nutrient-specific and general stress-induced transcriptional responses. In this study, we adjusted the external supply of iron, potassium and sulfur to cause the same retardation of shoot growth.

View Article and Find Full Text PDF

DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1).

View Article and Find Full Text PDF

ATP sulfurylase (ATPS) catalyzes the first committed step in the sulfate assimilation pathway, the activation of sulfate prior to its reduction. ATPS has been studied in only a few model organisms and even in these cases to a much smaller extent than the sulfate reduction and cysteine synthesis enzymes. This is possibly because the latter were considered of greater regulatory importance for sulfate assimilation.

View Article and Find Full Text PDF

Plants play a prominent role as sulfur reducers in the global sulfur cycle. Sulfate, the major form of inorganic sulfur utilized by plants, is absorbed and transported by specific sulfate transporters into plastids, especially chloroplasts, where it is reduced and assimilated into cysteine before entering other metabolic processes. How sulfate is transported into the chloroplast, however, remains unresolved; no plastid-localized sulfate transporters have been previously identified in higher plants.

View Article and Find Full Text PDF

A differential display cDNA-AFLP derived technique was used to identify gene transcripts regulated by chromium (Cr) in relation to sulfur (S) nutrition in Brassica juncea. Twelve-day old plants were grown with 200 μM sulfate (+S), without sulfate (-S), with 200 μM sulfate plus 200 μM chromate (+S+Cr), or without sulfate plus 200 μM chromate (-S+Cr). Forty-four combinations of degenerate primers were assayed, which allowed the detection of 346 Transcript-Derived Fragments (TDFs) differentially regulated by Cr and S at times 0, 10 min, 1 h, 24 h.

View Article and Find Full Text PDF

The concept of system 1 and system 2 ethylene biosynthesis during climacteric fruit ripening was initially described four decades ago. Although much is known about fruit development and climacteric ripening, little information is available about how ethylene biosynthesis is regulated during the postclimacteric phase. A targeted systems biology approach revealed a novel regulatory mechanism of ethylene biosynthesis of tomato (Solanum lycopersicum) when fruit have reached their maximal ethylene production level and which is characterized by a decline in ethylene biosynthesis.

View Article and Find Full Text PDF

There have been many attempts to increase concentrations of the nutritionally essential sulphur amino acids by modifying their biosynthetic pathway in leaves of transgenic plants. This report describes the first modification of cysteine biosynthesis in developing seeds; those of the grain legume, narrow leaf lupin (Lupinus angustifolius, L.).

View Article and Find Full Text PDF

Plants and bacteria assimilate and incorporate inorganic sulfur into organic compounds such as the amino acid cysteine. Cysteine biosynthesis involves a bienzyme complex, the cysteine synthase (CS) complex. The CS complex is composed of the enzymes serine acetyl transferase (SAT) and O-acetyl-serine-(thiol)-lyase (OAS-TL).

View Article and Find Full Text PDF

Sulfur is one of the critical elements in living matter, as it participates in several structural, metabolic and catalytic activities. Photosynthesis is an important process that entails the use of sulfur during both the light and carbon reactions. Nearly half of global photosynthetic carbon fixation is carried out by phytoplankton in the aquatic environment.

View Article and Find Full Text PDF

Sulfur emission from marine phytoplankton has been recognized as an important factor for global climate and as an entry into the biogeochemical S cycle. Despite this significance, little is known about the cellular S metabolism in algae that forms the basis of this emission. Some biochemical and genetic evidence for regulation of S uptake and assimilation is available for the freshwater model alga Chlamydomonas.

View Article and Find Full Text PDF