Path integration (PI) is impaired early in Alzheimer's disease (AD) but reflects multiple sub-processes that may be differentially sensitive to AD. To characterize these sub-processes, we developed a novel generative linear-angular model of PI (GLAMPI) to fit the inbound paths of healthy elderly participants performing triangle completion, a popular PI task, in immersive virtual reality with real movement. The model fits seven parameters reflecting the encoding, calculation, and production errors associated with inaccuracies in PI.
View Article and Find Full Text PDFWhen a target stimulus occurs in the presence of distracters, decisions are less accurate. But how exactly do distracters affect choices? Here, we explored this question using measurement of human behaviour, psychophysical reverse correlation and computational modelling. We contrasted two models: one in which targets and distracters had independent influence on choices (independent model) and one in which distracters modulated choices in a way that depended on their similarity to the target (interaction model).
View Article and Find Full Text PDFThe structures of metalloproteins that use redox-active metals for catalysis are usually exquisitely folded in a way that they are prearranged to accept their metal cofactors. Peptidylglycine α-hydroxylating monooxygenase (PHM) is a dicopper enzyme that catalyzes hydroxylation of the α-carbon of glycine-extended peptides for the formation of des-glycine amidated peptides. Here, we present the structures of apo-PHM and of mutants of one of the copper sites (H107A, H108A, and H172A) determined in the presence and absence of citrate.
View Article and Find Full Text PDFIn this study we investigate on the possible use of a new kind of magnetic nanostructures as drug delivery systems for anticancer drugs. The starting particles are formed by an inner core of iron, coated by magnetite as a stabilizing, magnetic layer. These units are further coated by a poly(ethylenglycol) (PEG) layer to make them less prone to the attack by macrophages and to favour longer stays in the blood stream.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
April 2015
In this work, we investigate a route towards the synthesis of multi-functionalized nanoparticles for medical purposes. The aim is to produce magnetite/gold (Fe3O4/Au) nanoparticles combining several complementary properties, specifically, being able to carry simultaneously an antitumor drug and a selected antibody chosen so as to improve specificity of the drug vehicle. The procedure included, firstly, the preparation of Fe3O4 cores coated with Au nanoparticles: this was achieved by using initially the layer-by-layer technique in order to coat the magnetite particles with a three polyelectrolyte (cationic-anionic-cationic) layer.
View Article and Find Full Text PDFGemcitabine is a chemotherapy drug used in different carcinomas, although because it displays a short biological half-life, its plasmatic levels can quickly drop below the effective threshold. Nanoparticle-based drug delivery systems can provide an alternative approach for regulating the bioavailability of this and most other anticancer drugs. In this work we describe a new model of composite nanoparticles consisting of a core of magnetite nanoparticles, coated with successive layers of high molecular weight poly(acrylic acid) and chitosan, and a final layer of folic acid.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2013
Superparamagnetic iron oxide nanoparticles are developing as promising candidates for biomedical applications such as targeted drug delivery. In particular, they represent an alternative to existing antitumor drug carriers, because of their ultra-fine size, low toxicity and magnetic characteristics. Nevertheless, there is a need to functionalize them in order to achieve good biocompatibility, efficient modification for further attachment of biomolecules, and improved stability.
View Article and Find Full Text PDFMany bioactive peptides, such as hormones and neuropeptides, require amidation at the C terminus for their full biological activity. Peptidylglycine α-hydroxylating monooxygenase (PHM) performs the first step of the amidation reaction-the hydroxylation of peptidylglycine substrates at the Cα position of the terminal glycine. The hydroxylation reaction is copper- and O(2)-dependent and requires 2 equiv of exogenous reductant.
View Article and Find Full Text PDFIn this paper we describe the preparation and characterization of magnetic nanocomposites designed for applications in targeted drug delivery. Combining superparamagnetic behavior with proper surface functionalization in a single entity makes it possible to have altogether controlled location and drug loading, and release capabilities. The colloidal vehicles consist of maghemite (γ-Fe2O3) cores surrounded by a gold shell through an intermediate silica coating.
View Article and Find Full Text PDFThe synthesis of composite nanoparticles consisting of a magnetite core coated with a layer of the hormone insulin growth factor 1 (IGF-1) is described. The adsorption of the hormone in the different formulations is first studied by electrophoretic mobility measurements as a function of pH, ionic strength, and time. Because of the permeable character expected for both citrate and IGF-1 coatings surrounding the magnetite cores, an appropriate analysis of their electrophoretic mobility must be addressed.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2011
The effect of phospholipid adsorption on the hydrophobicity of glass plates and on the surface charge of silica particles using contact angle and electrophoretic mobility measurements, respectively, was investigated. Deposition of successive statistical monolayers of dipalmitoylphosphatidylcholine (DPPC) on the glass surface showed zig-zag changes of water contact angle, especially on the first few monolayers. This behavior is qualitatively coherent with the oscillations observed in zeta potential values for increasing DPPC concentration.
View Article and Find Full Text PDFA nickel(II) enediolate cluster (2) forms upon treatment of [(6-Ph(2)TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO(4) (1) with Me(4)NOH x 5 H(2)O in CH(3)CN. Crystallographic studies of 2 revealed a hexanuclear structure of S(6) symmetry with a formula of {[Ni(PhC(O)C(O)C(O)Ph)(CH(3)OH)] x 1.33 CH(3)OH}(6).
View Article and Find Full Text PDFA series of divalent metal flavonolate complexes of the general formula [(6-Ph(2)TPA)M(3-Hfl)]X (1-5-X; X = OTf(-) or ClO(4)(-); 6-Ph(2)TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II); 3-Hfl = 3-hydroxyflavonolate) were prepared and characterized by X-ray crystallography, elemental analysis, FTIR, UV-vis, (1)H NMR or EPR, and cyclic voltammetry. All of the complexes have a bidentate coordinated flavonolate ligand. The difference in M-O distances (Delta(M-O)) involving this ligand varies through the series, with the asymmetry of flavonolate coordination increasing in the order Mn(II) approximately Ni(II) < Cu(II) < Zn(II) < Co(II).
View Article and Find Full Text PDFUsing a new N(4)-donor chelate ligand having a mixture of hydrophobic phenyl and hydrogen-bond-donor appendages, a trinuclear nickel(II) complex of the doubly deprotonated form of 2-hydroxy-1,3-diphenylpropane-1,3-dione was isolated, characterized (X-ray crystallography, elemental analysis, UV-vis, (1)H NMR, FTIR, and magnetic moment measurement), and evaluated for O(2) reactivity. This complex, [(6-NA-6-Ph(2)TPANi)(2)(mu-PhC(O)C(O)C(O)Ph)(2)Ni](ClO(4))(2) (4), has two terminal pseudooctahedral Ni(II) centers supported by the tetradentate chelate ligand and a central square-planar Ni(II) ion ligated by oxygen atoms of two bridging enediolate ligands. In CH(3)CN, 4 exhibits a deep orange/brown color and lambda(max) = 463 nm (epsilon = 16 000 M(-1)cm(-1)).
View Article and Find Full Text PDFA mononuclear Ni(II) complex ([(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1)), supported by the 6-Ph2TPA chelate ligand (6-Ph2TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine) and containing a cis-beta-keto-enolate ligand having a C2 hydroxyl substituent, undergoes reaction with O2 to produce a Ni(II) monobenzoate complex ([(6-Ph2TPA)Ni(O2CPh)]ClO4 (3)), CO, benzil (PhC(O)C(O)Ph), benzoic acid, and other minor unidentified phenyl-containing products. Complex 3 has been identified through independent synthesis and was characterized by X-ray crystallography, 1H NMR, FAB-MS, FTIR, and elemental analysis. A series of cis-beta-keto-enolate Ni(II) complexes supported by the 6-Ph2TPA ligand ([(6-Ph2TPA)Ni(PhC(O)CHC(O)Ph)]ClO4 (4), [(6-Ph2TPA)Ni(CH3C(O)CHC(O)CH3)]ClO4 (5), and [(6-Ph2TPA)Ni(PhC(O)CHC(O)C(O)Ph) (6)) have been prepared and characterized.
View Article and Find Full Text PDFTreatment of the ebnpa (N-2-(ethylthio)ethyl-N,N-bis((6-neopentylamino-2-pyridyl)methyl)amine) ligand with a molar equivalent amount of Cd(ClO(4))(2).5H(2)O in CH(3)CN followed by the addition of [Me(4)N]OH.5H(2)O yielded the cadmium hydroxide complex [(ebnpaCd)(2)(mu-OH)(2)](ClO(4))(2) (1).
View Article and Find Full Text PDFThe synthesis, characterization, and hemithioacetal isomerization reactivity of a mononuclear Ni(II) deprotonated amide complex, [(bppppa-)Ni]ClO4.CH3OH (1, bppppa- = monoanion of N,N-bis-[(6-phenyl-2-pyridyl)methyl]-N-[(6-pivaloylamido-2-pyridyl)methyl]amine), are reported. Complex 1 was characterized by X-ray crystallography, 1H NMR, UV-vis, FTIR, and elemental analysis.
View Article and Find Full Text PDFMononuclear Ni(II), Co(II), and Zn(II) complexes of the bppppa (N,N-bis[(6-phenyl-2-pyridyl)methyl]-N-[(6-pivaloylamido-2-pyridyl)methyl]amine) ligand have been synthesized and characterized by X-ray crystallography, 1H NMR, UV-vis (Ni(II) and Co(II)) and infrared spectroscopy, and elemental analysis. Each complex has the empirical formula [(bppppa)M](ClO4)2 (M = Ni(II), 2; Zn(II), 3; Co(II), 4) and in the solid state exhibits a metal center having a coordination number of five; albeit, the cation of 2 also has a sixth weak interaction involving a perchlorate anion. Treatment of [(bppppa)Ni](ClO4)2 (2) with 1 equiv of acetohydroxamic acid results in the formation of [(bppppa)Ni(HONHC(O)CH3)](ClO4)2 (1), a novel Ni(II) complex having a coordinated neutral acetohydroxamic acid ligand.
View Article and Find Full Text PDFTreatment of a new chelate ligand having both amide- and phenyl-appended pyridyl moieties with Ni(ClO4).6H2O and acetohydroxamic acid in methanol solution results in the production of a novel pseudo-octahedral Ni(II) complex having a neutral acetohydroxamic acid ligand stabilized by a hydrogen-bonding interaction.
View Article and Find Full Text PDF