Publications by authors named "Rudych P"

The neural underpinning of cooperative and competitive constructive activity has been investigated using mass-univariate approaches. In this study, we sought to compare the results of these approaches with the results of multivariate pattern analysis (MVPA). In particular, we wanted to test whether MVPA supports the claim made in previous studies that cooperation is associated with the activity of reward-related brain circuits.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating an artificial neural network to predict depression risk based on a motor control testing system, particularly using the stop-signal paradigm (SSP).
  • The SSP is commonly used in medical diagnostics for movement disorders but is hypothesized to help detect affective disorders like depression through behavioral metrics.
  • The research highlights how the neural network outperforms traditional statistical methods by integrating various performance indicators, aiming for more accurate predictions of depression.
View Article and Find Full Text PDF

This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance.

View Article and Find Full Text PDF

Self-appraisal is a process that leads to the formation of self-esteem, which contributes to subjective well-being and mental health. Neuroimaging studies link self-esteem with the activity of the medial prefrontal cortex (MPFC), right temporoparietal junction (rTPJ), posterior cingulate cortex (PCC), anterior insula (AIns), and dorsolateral prefrontal cortex. It is not known, however, how the process of self-appraisal itself is mediated by the brain and how different nodes of the self-appraisal network interact with each other.

View Article and Find Full Text PDF

Neuroimaging studies have revealed a multitude of brain regions associated with self- and other-referential processing, but the question how the distinction between self, close other, and distant other is processed in the brain still remains unanswered. The default mode network (DMN) is the primary network associated with the processing of self, whereas task-positive networks (TPN) are indispensable for the processing of external objects. We hypothesize that self- and close-other-processing would engage DMN more than TPN, whereas distant-other-processing would engage TPN to a greater extent.

View Article and Find Full Text PDF

The connections between large neuronal networks were analyzed in 12 patients with ischemic or hemorrhagic strokes and hemiparesis included in the course of the interactive brain stimulation in the area of the primary motor cortex by the analysis of independent components of fMRI. The results obtained in 3 patients are presented. Desynchronization of the visual networks with each other and with the motor networks as well as positive dynamics in Rankin scale and box and blocks test were observed in the patients.

View Article and Find Full Text PDF

A course of interactive stimulation of primary motor cortex (Brodmann area 4) in the brain of a stroke patient resulted in recovery of locomotion volume in the paretic extremities and in improvement of general health accompanied with diverse changes in cerebral activity. During the training course, the magnitude of response in the visual fields of Brodmann areas 17 and 18 decreased; in parallel, the motor areas were supplemented with other ones such as area 24 (the ventral surface of anterior cingulate gyrus responsible for self-regulation of human brain activity and implicated into synthesis of tactile and special information) in company with Brodmann areas 40, 41, 43, 44, and 45. EEG data showed that neurofeedback sessions persistently increased the θ rhythm power in Brodmann areas 7, 39, 40, and 47, while the corresponding powers progressively decreased during a real motion.

View Article and Find Full Text PDF

Synchronous fMRI-EEG mapping of cerebral activity in stroke patients made it possible to implement neurofeedback, a novel and promising therapeutic technology. This method integrates a real-time monitoring of cerebral activity by EEG and fMRI signals and training of the patients to control this activity simultaneously or alternatively via neurofeedback. The targets of such cerebral stimulation are cortical regions controlling arbitrary movements (Brodmann area 4), whereas its aim is optimization of activity in these regions in order to achieve better rehabilitation of stroke patients.

View Article and Find Full Text PDF