Publications by authors named "Rudy J Vonk"

Scaffolding makes it feasible to create organic-polymer monoliths in large confinements, such as wide-bore columns. By creating the scaffold from a metal good heat conductivity inside the column is obtained, which renders the relatively large columns (comparable with 4.6 mm i.

View Article and Find Full Text PDF

Stationary-phase-assisted modulation is used to overcome one of the limitations of contemporary comprehensive two-dimensional liquid chromatography, which arises from the combination of a first-dimension column that is typically narrow and long and a second-dimension column that is wide and short. Shallow gradients at low flow rates are applied in the first dimension, whereas fast analyses (at high flow rates) are required in the second dimension. Limitations of this approach include a low sample capacity of the first-dimension column and a high dilution of the sample in the complete system.

View Article and Find Full Text PDF

Post-polymerization photografting is a versatile tool to alter the surface chemistry of organic-based monoliths so as to obtain desired stationary phase properties. In this study, 2-acrylamido-2-methyl-1-propanesulfonic acid was grafted to a hydrophobic poly(butyl methacrylate-co-ethylene glycol dimethacrylate) monolith to create a strong cation exchange stationary phase. Both single-step and two-step photografting were addressed, and the effects of grafting conditions were assessed.

View Article and Find Full Text PDF

Organic-polymer monoliths with overall dimensions larger than one millimetre are prone to rupture - either within the monolith itself or between the monoliths and the containing wall - due to the inevitable shrinkage accompanying the formation of a cross-linked polymeric network. This problem has been addressed by creating titanium-scaffolded poly(styrene-co-divinylbenzene) (S-co-DVB) monoliths. Titanium-scaffolded monoliths were successfully used in liquid chromatography at very high pressures (up to 80MPa) and using gradients spanning the full range of water-acetonitrile compositions (0 to 100%).

View Article and Find Full Text PDF

When the typical column combinations are used, comprehensive two-dimensional gas chromatography (GC×GC) suffers from the impossibility to operate both dimensions at their optimum carrier gas velocities at the same time. This as a result of the flow mismatch caused by the different dimensions of the columns used. The objective of the present study was the development of monolithic second dimension columns which would allow simultaneous optimum-velocity operation.

View Article and Find Full Text PDF