Publications by authors named "Rudy Folkersma"

The biocompatibility and renewability of starch-based hydrogels have made them popular for applications across various sectors. Their tendency to incur damage after repeated use limits their effectiveness in practical applications. Improving the mechanical properties and self-healing of hydrogels simultaneously remains a challenge.

View Article and Find Full Text PDF

Herein, we simultaneously prepared borax-crosslinked starch-based hydrogels with enhanced mechanical properties and self-healing ability via a simple one-pot method. The focus of this work is to study the effects of the amylose/amylopectin ratio of starch on the grafting reactions and the performance of the resulting borax-crosslinked hydrogels. An increase in the amylose/ amylopectin ratio increased the gel fraction and grafting ratio but decreased the swelling ratio and pore diameter.

View Article and Find Full Text PDF

The current study focused on improving the properties of polylactic acid (PLA) for wider application in load-bearing scenarios. Various methods were explored to optimize the interaction between PLA and natural fibers, particularly wood fibers (WFs). Alkalized and epoxy-impregnated WFs were evaluated against untreated WFs and cellulose fibers in both injection molding (IM) and fused deposition modeling (FDM).

View Article and Find Full Text PDF

Active packaging made from biodegradable polymers and natural additives appears as an ecological alternative. In addition to having antioxidant activity and enhancing food preservation, it allows mitigating the negative impacts caused by improper disposal. This study pursued to produce biodegradable films based on a polymer blend PBAT/PLA (Ecovio®) using the flat extrusion method.

View Article and Find Full Text PDF

Furanic polymers, currently mainly represented by polyethylene 2,5-furandicarboxylate (PEF), also known as polyethylene furanoate, have a fantastic potential to replace fossil-based polymers: for example, polyethylene terephthalate (PET). While 2,5-furandicarboxylic acid (FDCA), a precursor of PEF, and its derived polymers have been studied extensively, 2,5-bis(hydroxymethyl)furan (BHMF) has received relatively little attention so far. Similarly to FDCA, BHMF is a biobased platform chemical derived from renewable sources such as sugars.

View Article and Find Full Text PDF

Oil-spill remediation is an international environmental challenge, and superamphiphilic membranes, as a promising solution, have recently drawn lots of attention. However, the robustness of the conventional membrane design is less satisfying under severe conditions during practical applications. Additionally, it is unavoidable for the membranes to face a series of foulants in their practical working environment, for example, algae and sand.

View Article and Find Full Text PDF

The accessibility of cost-competitive renewable materials and their application in additive manufacturing is essential for an efficient biobased economy. We demonstrate the rapid prototyping of sustainable resins using a stereolithographic 3D printer. Resin formulation takes place by straightforward mixing of biobased acrylate monomers and oligomers with a photoinitiatior and optical absorber.

View Article and Find Full Text PDF

To facilitate the ongoing transition toward a circular economy, the availability of renewable materials for additive manufacturing becomes increasingly important. Here, we report the successful fabrication of complex shaped prototypes from biobased acrylate photopolymer resins, employing a commercial stereolithography apparatus (SLA) 3D printer. Four distinct resins with a biobased content ranging from 34 to 67% have been developed.

View Article and Find Full Text PDF