Tracheal implantation remains a major therapeutic challenge due to the unavailability of donors and the lack of biomimetic tubular grafts. Fabrication of biomimetic tracheal scaffolds of suitable materials with matched rigidity, enhanced flexibility and biocompatibility has been a major challenge in the field of tracheal reconstruction. In this study, customized tubular grafts made up of FDA-approved polycaprolactone ( ) and polyurethane ( ) were fabricated using a novel solvent-based extrusion 3D printing.
View Article and Find Full Text PDFTissue-engineered tubular scaffolds offer huge potential to heal or replace the diseased organ parts like blood vessels, trachea, oesophagus and ureter. However, manufacturing these scaffolds in various scales and shapes is always challenging and requires progressive technology. Developing a flexible and accurate manufacturing method is a major developmental direction in the field of tubular scaffold fabrication.
View Article and Find Full Text PDF