This rational pursuit led to the identification of a novel sulfonamide derivative as a potent anti-lung cancer (LC) compound. Considering these results, we synthesized 38 novel sulfonamide derivatives with diverse skeletal structures. cytotoxicity assays revealed a potent and selective antiproliferative effect against A549 cells after evaluating a panel of cancer cell lines.
View Article and Find Full Text PDFOral cancer (OC) stands as a prominent cause of global mortality. Despite numerous efforts in recent decades, the efficacy of novel therapies to extend the lifespan of OC patients remains disappointingly low. Consequently, the demand for innovative therapeutic agents has become all the more pressing.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is a deadly breast cancer with a poor prognosis. Pyruvate kinase M2 (PKM2), a key rate-limiting enzyme in glycolysis, is abnormally highly expressed in TNBC. Overexpressed PKM2 amplifies glucose uptake, enhances lactate production, and suppresses autophagy, thereby expediting the progression of oncogenic processes.
View Article and Find Full Text PDFImidazopyridine scaffold holds significant pharmacological importance in the treatment of cancer. An in-house synthesized imidazopyridine-based molecule was found to have promising anticancer activity against breast cancer, lung cancer, and colon cancer. The molecule is an inhibitor of pyruvate kinase M2, the enzyme that elevates tumor growth, metastasis and chemoresistance by directly controlling tumor cell metabolism.
View Article and Find Full Text PDFPyruvate kinase M2 (PKM2) has surfaced as a potential target for anti-cancer therapy. PKM2 is known to be overexpressed in the tumor cells and is a critical metabolic conduit in supplying the augmented bioenergetic demands of the recalcitrant cancer cells. The presence of PKM2 in structurally diverse tetrameric as well as dimeric forms has opened new avenues to design novel modulators.
View Article and Find Full Text PDFThe dawn of targeted degradation using proteolysis-targeting chimeras (PROTACs) against recalcitrant proteins has prompted numerous efforts to develop complementary drugs. Although many of these are specifically directed against undruggable proteins, there is increasing interest in small molecule-based PROTACs that target intracellular pathways, and some have recently entered clinical trials. Concurrently, small molecule-based PROTACs that target protumorigenic pathways in cancer cells, the tumor microenvironment (TME), and angiogenesis have been found to have potent effects that synergize with the action of antibodies.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
November 2022
Pyrazolopyrimidine ring present in various approved drugs is reported to target the tyrosine kinase receptor. A new pyrazolopyrimidine ferrocene derivative, which targets tumor pyruvate kinase M2 showed an impressive antiproliferative profile against human oral squamous cell carcinoma cell line CAL27 assessed using Alamar blue assay. In line with the lead optimization process, the molecule was studied for physicochemical properties where a bioanalytical method has been developed in plasma on liquid chromatography-mass spectrometry and validated following the USFDA bioanalytical method validation guideline.
View Article and Find Full Text PDFGlandular cancers have a significant share of the total cancer patients all over the world. In the case of adrenocortical carcinomas (ACCs), although the benign form is more frequent and common, the malignant form provides a very less percentage of patients with five or more than five years of survival rate. There are gene alterations that are involved as a crucial factor behind the occurrence of ACCs.
View Article and Find Full Text PDFTyrosine kinases are enzymes that can transfer a phosphate group from ATP to a specific protein tyrosine, serine or threonine residue within a cell, operating as a switch that can turn 'on' and 'off' causing different physiological alterations in the body. Mutated kinases have been shown to display an equilibrium shift toward the activated state. Types I-III have been studied intensively leading to drugs like imatinib (type II), cobimetinib (type III), among others.
View Article and Find Full Text PDFCent Nerv Syst Agents Med Chem
October 2021
The most common reason behind dementia is Alzheimer's disease (AD) and it is predicted to be the third life-threatening disease apart from stroke and cancer for the geriatric population. Till now, only four drugs are available on the market for symptomatic relief. The complex nature of disease pathophysiology and lack of concrete evidence of molecular targets are the major hurdles for developing a new drug to treat AD.
View Article and Find Full Text PDFPotassium tertiary butoxide (KOBu) mediated constructions of C-C, C-O, C-N, and C-S bonds are reviewed with special emphasis on their synthetic applications. KOBu can be used to perform reactions already known to be carried out using transition metals, but it has advantages in terms of environmental congruence and economic cost. KOBu is widely employed in organic synthesis to mediate the construction of C-C, C-O, C-N, C-S and miscellaneous bonds in good to excellent yields.
View Article and Find Full Text PDFIntroduction: The outburst of the novel coronavirus COVID-19, at the end of December 2019 has turned into a pandemic, risking many human lives. The causal agent being SARS-CoV-2, a member of the long-known Coronaviridae family, is a positive-sense single-stranded enveloped virus and closely related to SARS-CoV. It has become the need of the hour to understand the pathophysiology of this disease, so that drugs, vaccines, treatment regimens and plausible therapeutic agents can be produced.
View Article and Find Full Text PDFBecause of their commanding properties, ultrashort and short peptides are gaining significance as viable candidates for molecular self-assembly, which is a naturally inspired approach for developing supramolecular structures and can be used to design various strategies of significance in the field of biomaterials. Self-assembly of biomolecules like proteins, lipids, and nucleic acids is observed in living organisms, various biological-process-based examples like amyloid-β plaque formation, lipid bilayer assembly, and the complementary binding of the nucleotide bases of nucleic acids involve self-assembly. Among all biomolecules, peptide-based self-assembly has the advantage of the availability of the source, peptides can be easily synthesized or obtained from the natural degradation process and can be engineered to modulate their action, making them an area of immense interest for research.
View Article and Find Full Text PDF