Proc Natl Acad Sci U S A
December 2024
The adsorption of ellipsoidal colloidal particles on liquid interfaces induces interfacial deformation, resulting in anisotropic interface-mediated interactions and the formation of superstructures. Soft prolate-shaped microgels at the air-water interface offer an ideal model for studying spontaneous capillary-driven self-assembly due to their tunable aspect ratio, controlled functionality, and softness. These microgels consist of a polystyrene core surrounded by a cross-linked, fluorescently labeled poly([Formula: see text]-isopropylmethylacrylamide) shell.
View Article and Find Full Text PDFThin films made of deformable micro- and nano-units, such as biological membranes, polymer interfaces, and particle-laden liquid surfaces, exhibit a complex behavior during drying, with consequences for various applications like wound healing, coating technologies, and additive manufacturing. Studying the drying dynamics and structural changes of soft colloidal films thus holds the potential to yield valuable insights to achieve improvements for applications. In this study, interfacial monolayers of core-shell (CS) microgels with varying degrees of softness are employed as model systems and to investigate their drying behavior on differently modified solid substrates (hydrophobic vs hydrophilic).
View Article and Find Full Text PDFSurface-active polymers have important applications as effective and responsive emulsifiers, foaming agents, and coatings. In this contribution, we explore the impact of the polymer architecture on the behavior at oil-water interfaces by comparing different poly(-isopropylacrylamide) (pNIPAM)-based systems, namely, monolayers of linear and star-shaped macromolecules, ultralow cross-linked, regular cross-linked, and hollow microgels. Compression isotherms were determined experimentally as well as by computer simulations.
View Article and Find Full Text PDFMonolayers of polymer microgels with a spherical cavity adsorbed at the liquid-liquid interface were studied using mesoscopic computer simulations. One liquid, named water, was always considered as a good solvent, while the microgel solubility in the second liquid, named oil, was varied. The symmetric and asymmetric cases of vanishing and the strong differences in solubility between the network particles and the liquids were considered.
View Article and Find Full Text PDFHypothesis: Recently, it has become possible to synthesize hollow polyelectrolyte nano- and microgels. The shell permeability can be controlled by external stimuli, while the cavity can serve as a storage place for guest molecules. However, there is a lack of a detailed understanding at the molecular level regarding the role of the network topology, inhomogeneities of the distribution of cross-links, and the impact of the electrostatics on the structural response of hollow microgel to external stimuli.
View Article and Find Full Text PDFObjective: The human large intergenic non-coding RNA-regulator of reprogramming program () is known as a stem cell specific linc-RNA. linc-ROR counteracts differentiation via sequestering microRNA-145 (miR-145) that targets OCT4 transcript. Despite the research on the expression and function, the exact structure of transcripts is not clear.
View Article and Find Full Text PDFMicrogels, cross-linked polymers with submicrometer size, are ideal soft model systems. While spherical microgels have been studied extensively, anisotropic microgels have hardly been investigated. In this study, we compare the interfacial deformation and assembly of anisotropic core-shell and hollow microgels.
View Article and Find Full Text PDFAnisotropic, submicrometer-sized particles are versatile systems providing interesting features in creating ordering in two-dimensional systems. Combining hard ellipsoids with a soft shell further enhances the opportunities to trigger and control order and alignment. In this work, we report rich 2D phase behavior and show how softness affects the ordering of anisotropic particles at fluid oil-water interfaces.
View Article and Find Full Text PDFSoft matter at solid-liquid interfaces plays an important role in multiple scientific disciplines as well as in various technological fields. For microgels, representing highly interesting soft matter systems, we demonstrate that the preparation method, i.e.
View Article and Find Full Text PDFSouthwest Asia is climatically and topographically a highly diverse region in the xeric belt of the Old World. Its diversity of arid habitats and climatic conditions acted as an important area for the evolution and diversification of up to 20 (of 38 known) independent Eudicot C origins. Some of these lineages present unique evolutionary strategies like single-cell functioning C and C-C switching mechanisms.
View Article and Find Full Text PDFControlling the distribution of ionizable groups of opposite charge in microgels is an extremely challenging task, which could open new pathways to design a new generation of stimuli-responsive colloids. Herein, we report a straightforward approach for the synthesis of polyampholyte Janus-like microgels, where ionizable groups of opposite charge are located on different sides of the colloidal network. This synthesis approach is based on the controlled self-assembly of growing polyelectrolyte microgel precursors during the precipitation polymerization process.
View Article and Find Full Text PDFSolid-liquid interfaces play an important role for functional devices. Hence, a detailed understanding of the interaction of soft matter objects with solid supports and of the often concomitant structural deformations is of great importance. We address this topic in a combined experimental and simulation approach.
View Article and Find Full Text PDFA striking discovery in our work is that the distribution of ionizable groups in polyampholyte microgels (random and core-shell) controls the interactions with the captured proteins. Polyampholyte microgels are capable to switch reversibly their charges from positive to negative depending on pH. In this work, we synthesized differently structured polyampholyte microgels with controlled amounts and different distribution of acidic and basic moieties as colloidal carriers to study the loading and release of the model protein cytochrome c (cyt-c).
View Article and Find Full Text PDFThe use of herbs with medicinal value and biomedical effects has increased tremendously in the last years. However, inadequate basic knowledge of their mode of action is the main issue related to phytotherapy, although they have shown promising potential. To provide insights into these important issues, we tested here on appropriate models the efficacy of essential oil (Aa-EO) for anti-inflammatory properties.
View Article and Find Full Text PDFOxidative stress can alter the expression level of many microRNAs (miRNAs), but how these changes are integrated and related to oxidative stress responses is poorly understood. In this article, we addressed this question by using in silico tools. We reviewed the literature for miRNAs whose expression is altered upon oxidative stress damage and used them in combination with various databases and software to predict common gene targets of oxidative stress-modulated miRNAs and affected pathways.
View Article and Find Full Text PDFTo realize carriers for drug delivery, cationic containers are required for anionic guests. Nevertheless, the toxicity of cationic carriers limits their practical use. In this study, we investigate a model system of polyampholyte N-isopropylacrylamide (NIPAM)-based microgels with a cationic core and an anionic shell to study whether the presence of a negative shell allows the cationic core to be shielded while still enabling the uptake and release of the anionic guest polyelectrolytes.
View Article and Find Full Text PDFWe study how a cavity changes the response of hollow microgels with respect to regular ones in overcrowded environments. The structural changes of hollow poly(N-isopropylacrylamide) microgels embedded within a matrix of regular ones are probed by small-angle neutron scattering with contrast variation. The form factors of the microgels at increasing compressions are directly measured.
View Article and Find Full Text PDFAmphiphilic arborescent block copolymers of two generations (G2 and G3) and polymer microgels, obtained via cross-linking of diblock copolymers, were studied in a selective solvent and at liquid interface via dissipative particle dynamics (DPD) simulations. Depending on the primary structure, single arborescent macromolecules in selective solvent can have both core-corona and multicore structures. Self-assembly of the G2, G3, and microgels in the selective solvent is compared with equivalent linear diblock copolymers.
View Article and Find Full Text PDFWe report on the behavior of two immiscible liquids within polymer microgel adsorbed at their interface. By means of dissipative particle dynamics (DPD) simulations and theoretical analysis in the framework of the Flory-Huggins (FH) lattice theory, we demonstrate that the microgel acts as a "compatibilizer" of these liquids: their miscibility within the microgel increases considerably. If the incompatibility of the liquids is moderate, although strong enough to induce phase separation in their 1:1 composition, they form homogeneous mixture in the microgel interior.
View Article and Find Full Text PDFWe report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell.
View Article and Find Full Text PDFBackground: Diets enriched with n-3 polyunsaturated fatty acids (n-3 PUFAs) have been shown to exert a positive impact on muscle diseases. Flaxseed is one of the richest sources of n-3 PUFA acid α-linolenic acid (ALA). The aim of this study was to assess the effects of flaxseed and ALA in models of skeletal muscle degeneration characterized by high levels of Tumor Necrosis Factor-α (TNF).
View Article and Find Full Text PDFThis work concerns interfacial adsorption and attachment of swollen microgel with low- to medium-level cross-linking density. Compared to colloids that form a second, dispersed phase, the suspended swollen microgel particles are ultrahigh molecular weight molecules, which are dissolved like a linear polymer, so that solvent and solute constitute only one phase. In contrast to recent literature in which microgels are treated as particles with a distinct surface, we consider solvent-solute interaction as well as interfacial adsorption based on the chain segments that can form trains of adsorbed segments and loops protruding from the surface into the solvent.
View Article and Find Full Text PDFWe investigate the influence of a solid core and of the cross-link density on the compression of microgel particles at oil-water interfaces by means of compression isotherms and computer simulations. We investigate particles with different morphology, namely core-shell particles containing a solid silica core surrounded by a cross-linked polymer shell of poly(N-isopropylacrylamide), and the corresponding hollow microgels where the core was dissolved. The polymer shell contains different amounts of cross-linker.
View Article and Find Full Text PDF