This paper presents a new electrochemical method for the detection and characterisation of aqueous droplets in an organic carrier fluid (1,2-dichloroethane) formed in flow-focusing microfluidic devices. The devices consist of a conventional flow-focusing channel 250 microm wide and 250 microm deep cast out of poly(dimethylsiloxane) (PDMS) which is sealed onto a glass substrate containing a set of microelectrodes 100 microm long. Chronoamperometric analysis of a suitable electrolyte contained in the organic phase is presented for characterising the droplet frequency and size.
View Article and Find Full Text PDFA novel microfluidic electrochemical channel flow cell has been constructed for in situ operation in a cylindrical TE011 resonant ESR cavity under variable temperature conditions. The cell has a U-tube configuration, consisting of an inlet and outlet channel which run parallel and contain evaporated gold film working, pseudo-reference, and counter electrodes. This geometry was employed to permit use in conjunction with variable temperature apparatus which does not allow a flow-through approach.
View Article and Find Full Text PDFThe design, fabrication, and characterization of microfluidic channel flow devices for in situ simultaneous hydrodynamic electrochemical ESR is reported. The microelectrochemical reactors consist of gold film electrodes situated within rectangular ducts of height 350 microm and widths in the range 500-2000 microm. The small dimensions of the channels result in minimal dielectric loss when centralized within a cylindrical TE011 resonant cavity, leading to a high level of sensitivity.
View Article and Find Full Text PDF