Publications by authors named "Rudolf Shiu-Sun Wu"

Pollutants often exist as mixtures in environmental settings, creating a challenge in selecting the most effective combination of biomarkers for routine monitoring. This study was conducted seasonally in Victoria Harbour, Hong Kong, to compare the responses of nine biomarkers in the green-lipped mussel Perna viridis with respect to its tissue levels of persistent organic pollutants and heavy metals. Multivariate statistical techniques were utilised to determine the single best predictor and optimal subset of biomarkers in P.

View Article and Find Full Text PDF

The wide application of benzophenones (BPs), such as benzophenone-3 (BP3), as an ingredient in sunscreens, cosmetics, coatings, and plastics, has led to their global contamination in aquatic environments. Using the marine diatom Chaetoceros neogracilis as a model, this study assessed the toxic effects and mechanisms of BP3 and its two major metabolites (BP8 and BP1). The results showed that BP3 exhibited higher toxicity on C.

View Article and Find Full Text PDF

The green-lipped mussel Perna viridis was utilised for pollution biomonitoring in Victoria Harbour and its adjacent aquaculture area in Hong Kong. P. viridis was collected from a reference site and redeployed at five study sites for five weeks during the dry and wet seasons of 2019.

View Article and Find Full Text PDF

The adaptation of marine organisms to the impending challenges presented by ocean acidification (OA) is essential for their future survival, and mechanisms underlying OA adaptation have been reported in several marine organisms. In the natural environment, however, marine organisms are often exposed to a combination of environmental stressors, and the interactions between adaptive responses have yet to be elucidated. Here, we investigated the susceptibility of filter-feeding rotifers to short-term (ST) and long-term (LT) (≥180 generations) high CO conditions coupled with nanoplastic (NPs) exposure (ST+ and LT+).

View Article and Find Full Text PDF

Global deoxygenation in aquatic systems is an increasing environmental problem, and substantial oxygen loss has been reported. Aquatic animals have been continuously exposed to hypoxic environments, so-called "dead zones," in which severe die-offs among organisms are driven by low-oxygen events. Multiple studies of hypoxia exposure have focused on in vivo endpoints, metabolism, oxidative stress, and immune responses in aquatic invertebrates such as molluscs, crustaceans, echinoderms, and cnidarians.

View Article and Find Full Text PDF

A great variety of endocrine-disrupting chemicals (EDCs) have been used extensively and become widespread in the environment nowadays. Limited mammalian studies have shown that certain EDCs may target chromosome and epigenome of the germline, leading to adverse effects in subsequent generations, despite these progenies having never been exposed to the EDC before. However, the underlying mechanisms of chromosomal changes induced by these pollutants remain poorly known.

View Article and Find Full Text PDF

The synthetic estrogen 17α-ethinylestradiol (EE2) is a common component of hormone therapy and oral contraceptives and has been widely used for nearly 60 years. Numerous studies have shown that exposure to EE2 can affect embryonic development in a number of fish species. The effects of parental and embryonic EE2 exposure on embryo developmental toxicity and the underlying molecular mechanisms, however, have rarely been examined.

View Article and Find Full Text PDF

Hypoxia is a potent endocrine disruptor that is posing serious problems to the fish reproductive systems. Our previous studies reported that hypoxia could cause a transgenerational impairment of ovarian development and interfere hatching success in F2 offspring of marine medaka fish (Oryzias melastigma) through epigenetic regulation. As part of the epigenetic regulation, we investigated the involvement of microRNAs (miRNAs) in hypoxia-induced transgenerational reproductive impairments.

View Article and Find Full Text PDF

17α-ethinylestradiol (EE2) is an anthropogenic estrogen that is widely used for hormone therapy and oral contraceptives. It was reported that EE2 exposure induced reproductive impairments through processes affecting reproduction behavior and inducing ovotestis. However, the effects of continuous EE2 exposure on the reproductive performance remain largely unknown.

View Article and Find Full Text PDF

Humans are regularly and continuously exposed to ionizing radiation from both natural and artificial sources. Cumulating evidence shows adverse effects of ionizing radiation on both male and female reproductive systems, including reduction of testis weight and sperm count and reduction of female germ cells and premature ovarian failure. While most of the observed effects were caused by DNA damage and disturbance of DNA repairment, ionizing radiation may also alter DNA methylation, histone, and chromatin modification, leading to epigenetic changes and transgenerational effects.

View Article and Find Full Text PDF

Hypoxia, a low environmental oxygen level, is a common problem in the ocean globally. Hypoxia has been known to cause disruption to the endocrine system of marine organisms in both laboratory and field studies. Our previous studies have demonstrated the sex-specific response to hypoxia in the neural and reproductive systems of marine fish.

View Article and Find Full Text PDF

Benzophenones (BPs) and other ultra violet (UV) filters (UV-filters) are widely used in sunblock and other personal care products, raising concerns about their adverse health risks to human, especially for children. In the present study, BP-type UV-filters and other four widely used UV-filters were evaluated in the child urinary samples (4-6 years, n = 53), tap water and commercial distilled water in Hong Kong. The results suggested that the target chemicals are ubiquitous in the subject.

View Article and Find Full Text PDF

Medaka ( sp.) is an important fish species in ecotoxicology and considered as a model species due to its biological features including small body size and short generation time. Since Japanese medaka is a freshwater species with access to an excellent genome resource, the marine medaka is also applicable for the marine ecotoxicology.

View Article and Find Full Text PDF

The urine levels of organophosphate flame retardants (PFRs) and bisphenol A (BPA) in kindergarten children (n = 31, 4-6 years old, sampling performed in 2016) in Hong Kong were measured. The detection frequency of the target PFRs, tri(2-chloroethyl)phosphate (TCEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(chloroisopropyl)phosphate (TCIPP), triphenyl phosphate (TPHP) and 2-ethylhexyl diphenyl phosphate (EHDPP) ranged from 52% to 84%. The 95th percentile urinary concentrations of TPHP, TDCIPP, TCIPP, EHDPP and TCEP were 1.

View Article and Find Full Text PDF

Hypoxia is a pressing environmental problem in both marine and freshwater ecosystems globally, and this problem will be further exacerbated by global warming in the coming decades. Recently, we reported that hypoxia can cause transgenerational impairment of sperm quality and quantity in fish (in F0, F1, and F2 generations) through DNA methylome modifications. Here, we provide evidence that female fish ( Oryzias melastigma) exposed to hypoxia exhibit reproductive impairments (follicle atresia and retarded oocyte development), leading to a drastic reduction in hatching success in the F2 generation of the transgenerational group, although they have never been exposed to hypoxia.

View Article and Find Full Text PDF

There are over 400 hypoxic zones in the ocean worldwide. Both laboratory and field studies have shown that hypoxia causes endocrine disruption and reproductive impairments in vertebrates. More importantly, our recent study discovered that parental (F0) hypoxia exposure resulted in the transgenerational impairment of sperm quality in the F2 generation through the epigenetic regulation of germ cells.

View Article and Find Full Text PDF

Hypoxia is an important environmental stressor leading to endocrine disruption and reproductive impairment in fish. Although the hypoxia-inducible factor 1 (HIF-1) is known to regulate the transcription of various genes mediating oxygen homeostasis, its role in modulating steroidogenesis-related gene expression remains poorly understood. In this study, the regulatory effect of HIF-1 on the expression of 9 steroidogenic enzyme genes was investigated in zebrafish embryos using a "gain-of-function and loss-of-function" approach.

View Article and Find Full Text PDF

Hypoxia is a global environmental concern and poses a significant threat to aquatic ecosystems, including the sustainability of natural fish populations. The deleterious effects of hypoxia on fish reproductive fitness, as mediated by disruption of sex hormones and gene expression along the Brain-Pituitary-Gonad axis, have been well documented. Recently, we further demonstrated that the observed disruption of steroidogenesis in the ovary of marine medaka Oryzias melastigma is mediated through microRNAs (miRNAs).

View Article and Find Full Text PDF

Hypoxia, an endocrine disruptor, is pressing global problem affecting marine organisms in over 400 "Dead Zones" worldwide. There is growing evident demonstrated the disruptive effect of hypoxia on reproductive systems of marine fish through the impairments of steroidogenic gene expression, leading to the alteration of sex hormone production in gonads. But the detailed molecular mechanism underlying the responses of female reproductive systems to hypoxic stress remains largely unknown.

View Article and Find Full Text PDF

Hypoxia is amongst the most widespread and pressing problems in aquatic environments. Here we demonstrate that fish (Oryzias melastigma) exposed to hypoxia show reproductive impairments (retarded gonad development, decrease in sperm count and sperm motility) in F1 and F2 generations despite these progenies (and their germ cells) having never been exposed to hypoxia. We further show that the observed transgenerational reproductive impairments are associated with a differential methylation pattern of specific genes in sperm of both F0 and F2 coupled with relevant transcriptomic and proteomic alterations, which may impair spermatogenesis.

View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS), a hepato-toxicant and potential non-genotoxic carcinogen, was widely used in industrial and commercial products. Recent studies have revealed the ubiquitous occurrence of PFOS in the environment and in humans worldwide. The widespread contamination of PFOS in human serum raised concerns about its long-term toxic effects and its potential risks to human health.

View Article and Find Full Text PDF

The marine medaka Oryzias melastigma has often been used as a marine fish model to investigate the biological responses to environmental stresses and pollutants in marine environments. miRNAs are post-transcriptional regulators of many biological processes in a variety of organisms, and have been shown to be affected by environmental stresses, but the novel miRNA profile of marine medaka has not been reported. Using both genome and small RNA sequencings coupled with different bioinformatics analyses, we have discovered 58, 82, 234, and 201 unannotated miRNAs in the brain, liver, ovary and testis tissues of marine medaka, respectively.

View Article and Find Full Text PDF

Hypoxia, an endocrine disruptor, affects synthesis and balance of sex steroid hormones, leading to reproductive impairment in both female and male fish. Cumulating reports demonstrated the alternation of hypothalamus-pituitary-gonad axis (HPG-axis) by hypoxia. However, the detail mechanism underlying how hypoxia may alter other brain functions remains largely unknown.

View Article and Find Full Text PDF

Hypoxia is a worldwide environmental problem in marine ecosystems, leading to serious declines in fishery production over large areas. Our previous studies demonstrated that hypoxia is an endocrine disruptor which can cause reproductive impairment through the regulation of miRNAs, suggesting the functional role of miRNAs in reproductive systems in response to hypoxia. In this study, we used small RNA sequencing to determine the change in miRNA profile in ovary of marine medaka Oryzias melastigma under hypoxic stress.

View Article and Find Full Text PDF