Acta Crystallogr D Biol Crystallogr
September 2013
Mg(2+) translocation across cellular membranes is crucial for a myriad of physiological processes. Eukaryotic Mrs2 transporters are distantly related to the major bacterial Mg(2+) transporter CorA, the structure of which displays a bundle of giant α-helices forming a long pore that extends beyond the membrane before widening into a funnel-shaped cytosolic domain. Here, a functional and structural analysis of the regulatory domain of the eukaryotic Mg(2+) channel Mrs2 from the yeast inner mitochondrial membrane is presented using crystallography, genetics, biochemistry and fluorescence spectroscopy.
View Article and Find Full Text PDFMitochondrial iron uptake is of key importance both for organelle function and cellular iron homoeostasis. The mitochondrial carrier family members Mrs3 and Mrs4 (homologues of vertebrate mitoferrin) function in organellar iron supply, yet other low efficiency transporters may exist. In Saccharomyces cerevisiae, overexpression of RIM2 (MRS12) encoding a mitochondrial pyrimidine nucleotide transporter can overcome the iron-related phenotypes of strains lacking both MRS3 and MRS4.
View Article and Find Full Text PDFThe highly conserved G-M-N motif of the CorA-Mrs2-Alr1 family of Mg(2+) channels has been shown to be essential for Mg(2+) transport. We performed random mutagenesis of the G-M-N sequence of Saccharomyces cerevisiae Mrs2p in an unbiased genetic screen. A large number of mutants still capable of Mg(2+) influx, albeit below the wild-type level, were generated.
View Article and Find Full Text PDFUnder conditions of environmental stress, the plasma membrane is involved in several regulatory processes to promote cell survival, like maintenance of signaling pathways, cell wall organization and intracellular ion homeostasis. PUN1 encodes a plasma membrane protein localizing to the ergosterol-rich membrane compartment occupied also by the arginine permease Can1. We found that the PUN1 (YLR414c) gene is transcriptionally induced upon metal ion stress.
View Article and Find Full Text PDFThe Leu294 residue in the cytoplasmic neck of Thermotoga maritima CorA is considered to be the main gate for Mg2+ transport. We created three site-directed mutants at this position: in the Leu294Asp and Leu294Gly mutants we observed a defect in closing of the pore, while in the Leu294Arg mutant not only gating, but also the regulation of Mg2+ uptake was affected. Our results confirmed the importance of the Leu294 for gating of Mg2+ transport and in addition revealed the influence of the charge and structural features of the amino acid residues on the gating mechanism.
View Article and Find Full Text PDFSaccharomyces cerevisiae Lpe10p is a homologue of the Mg(2+)-channel-forming protein Mrs2p in the inner mitochondrial membrane. Deletion of MRS2, LPE10 or both results in a petite phenotype, which exhibits a respiratory growth defect on nonfermentable carbon sources. Only coexpression of MRS2 and LPE10 leads to full complementation of the mrs2Delta/lpe10Delta double disruption, indicating that these two proteins cannot substitute for each other.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
June 2010
Mrs2 transporters are distantly related to the major bacterial Mg(2+) transporter CorA and to Alr1, which is found in the plasma membranes of lower eukaryotes. Common features of all Mrs2 proteins are the presence of an N-terminal soluble domain followed by two adjacent transmembrane helices (TM1 and TM2) near the C-terminus and of the highly conserved F/Y-G-M-N sequence motif at the end of TM1. The inner mitochondrial domain of the Mrs2 from Saccharomyces cerevisae was overexpressed, purified and crystallized in two different crystal forms corresponding to an orthorhombic and a hexagonal space group.
View Article and Find Full Text PDFDefects of the mitochondrial K(+)/H(+) exchanger (KHE) result in increased matrix K(+) content, swelling, and autophagic decay of the organelle. We have previously identified the yeast Mdm38 and its human homologue LETM1, the candidate gene for seizures in Wolf-Hirschhorn syndrome, as essential components of the KHE. In a genome-wide screen for multicopy suppressors of the pet(-) (reduced growth on nonfermentable substrate) phenotype of mdm38Delta mutants, we now characterized the mitochondrial carriers PIC2 and MRS3 as moderate suppressors and MRS7 and YDL183c as strong suppressors.
View Article and Find Full Text PDFHuman Wolf-Hirschhorn syndrome (WHS) is a multigenic disorder resulting from a hemizygous deletion on chromosome 4. LETM1 is the best candidate gene for seizures, the strongest haploinsufficiency phenotype of WHS patients. Here, we identify the Drosophila gene CG4589 as the ortholog of LETM1 and name the gene DmLETM1.
View Article and Find Full Text PDFThe mitochondrial K(+)/H(+) exchanger (KHE) is a key regulator of mitochondrial K(+), the most abundant cellular cation, and thus for volume control of the organelle. Downregulation of the mitochondrial KHE results in osmotic swelling and autophagic degradation of the organelle. This chapter describes methods to shut-off expression of Mdm38p, an essential factor of the mitochondrial KHE, and to observe the cellular consequences thereof, in particular changes in KHE activity and morphogenetic changes of mitochondria by applying new techniques developed in our laboratories.
View Article and Find Full Text PDFThe yeast proteins Mrs3p and Mrs4p are two closely related members of the mitochondrial carrier family (MCF), which had previously been implicated in mitochondrial Fe(2+) homeostasis. A vertebrate Mrs3/4 homologue named mitoferrin was shown to be essential for erythroid iron utilization and proposed to function as an essential mitochondrial iron importer. Indirect reporter assays in isolated yeast mitochondria indicated that the Mrs3/4 proteins are involved in mitochondrial Fe(2+) utilization or transport under iron-limiting conditions.
View Article and Find Full Text PDFRegulation of mitochondrial volume is a key issue in cellular pathophysiology. Mitochondrial volume and shape changes can occur following regulated fission-fusion events, which are modulated by a complex network of cytosolic and mitochondrial proteins; and through regulation of ion transport across the inner membrane. In this review we will cover mitochondrial volume homeostasis that depends on (i) monovalent cation transport across the inner membrane, a regulated process that couples electrophoretic K(+) influx on K(+) channels to K(+) extrusion through the K(+)-H(+) exchanger; (ii) the permeability transition, a loss of inner membrane permeability that may be instrumental in triggering cell death.
View Article and Find Full Text PDFThe human gene MRS2L encodes a mitochondrial protein distantly related to CorA Mg(2+) transport proteins. Constitutive shRNA-mediated knockdown of hMRS2 in human HEK-293 cell line was found here to cause death. To further study its role in Mg(2+) transport, we have established stable cell lines with conditionally expressing shRNAs directed against hMRS2L.
View Article and Find Full Text PDFMembers of the CorA-Mrs2-Alr1 superfamily of Mg(2+) transporters are ubiquitous among pro- and eukaryotes. The crystal structure of a bacterial CorA protein has recently been solved, but the mode of ion transport of this protein family remained obscure. Using single channel patch clamping we unequivocally show here that the mitochondrial Mrs2 protein forms a Mg(2+)-selective channel of high conductance (155 pS).
View Article and Find Full Text PDFTo learn about the cellular processes involved in Mg(2+) homeostasis and the mechanisms allowing cells to cope with low Mg(2+) availability, we performed RNA expression-profiling experiments and followed changes in gene activity upon Mg(2+) depletion on a genome-wide scale. A striking portion of genes up-regulated under Mg(2+) depletion are also induced by high Ca(2+) and/or alkalinization. Among the genes significantly up-regulated by Mg(2+) starvation, Ca(2+) stress, and alkalinization are ENA1 (encoding a P-type ATPase sodium pump) and PHO89 (encoding a sodium/phosphate cotransporter).
View Article and Find Full Text PDFAlr1p is an integral plasma membrane protein essential for uptake of Mg(2+) into yeast cells. Homologs of Alr1p are restricted to fungi and some protozoa. Alr1-type proteins are distant relatives of the mitochondrial and bacterial Mg(2+)-transport proteins, Mrs2p and CorA, respectively, with which they have two adjacent TM domains and a short Mg(2+) signature motif in common.
View Article and Find Full Text PDFThe nuclear gene MRS2 in Saccharomyces cerevisiae encodes an integral protein (Mrs2p) of the inner mitochondrial membrane. It forms an ion channel mediating influx of Mg2+ into mitochondria. Orthologues of Mrs2p have been shown to exist in other lower eukaryotes, in vertebrates and in plants.
View Article and Find Full Text PDFYOL027c in yeast and LETM1 in humans encode integral proteins of the inner mitochondrial membrane. They have been implicated in mitochondrial K+ homeostasis and volume control. To further characterize their role, we made use of submitochondrial particles (SMPs) with entrapped K+- and H+-sensitive fluorescent dyes PBFI and BCECF, respectively, to study the kinetics of K+ and H+ transport across the yeast inner mitochondrial membrane.
View Article and Find Full Text PDFThe Mg2+ fluorescent dye mag-fura 2, entrapped in cells or organelles, has frequently been used for dual excitation ratio-metric determinations of free ionic Mg2+ concentrations in eukaryotic, mostly mammalian cells. Here we report its successful application to measure free Mg2+ concentrations ([Mg2+]i) in Salmonella enterica cells. When kept in nominally Mg2+ free buffer (resting conditions), the [Mg2+]i of wild-type cells has been determined to be 0.
View Article and Find Full Text PDFThe yeast open reading frames YOL027 and YPR125 and their orthologs in various eukaryotes encode proteins with a single predicted trans-membrane domain ranging in molecular mass from 45 to 85 kDa. Hemizygous deletion of their human homolog LETM1 is likely to contribute to the Wolf-Hirschhorn syndrome phenotype. We show here that in yeast and human cells, these genes encode integral proteins of the inner mitochondrial membrane.
View Article and Find Full Text PDFThe yeast genes MRS3 and MRS4 encode two members of the mitochondrial carrier family with high sequence similarity. To elucidate their function we utilized genome-wide expression profiling and found that both deletion and overexpression of MRS3/4 lead to up-regulation of several genes of the "iron regulon." We therefore analyzed the two major iron-utilizing processes, heme formation and Fe/S protein biosynthesis in vivo, in organello (intact mitochondria), and in vitro (mitochondrial extracts).
View Article and Find Full Text PDFSteady-state concentrations of mitochondrial Mg(2+) previously have been shown to vary with the expression of Mrs2p, a component of the inner mitochondrial membrane with two transmembrane domains. While its structural and functional similarity to the bacterial Mg(2+) transport protein CorA suggested a role for Mrs2p in Mg(2+) influx into the organelle, other functions in cation homeostasis could not be excluded. Making use of the fluorescent dye mag-fura 2 to measure free Mg(2+) concentrations continuously, we describe here a high capacity, rapid Mg(2+) influx system in isolated yeast mitochondria, driven by the mitochondrial membrane potential Deltapsi and inhibited by cobalt(III)hexaammine.
View Article and Find Full Text PDFTo identify yeast genes involved in cobalt detoxification, we performed RNA expression profiling experiments and followed changes in gene activity upon cobalt stress on a genome-wide scale. We found that cobalt stress specifically results in an immediate and dramatic induction of genes involved in iron uptake. This response is dependent on the Aft1 protein, a transcriptional factor known to regulate a set of genes involved in iron uptake and homeostasis (iron regulon).
View Article and Find Full Text PDF