Publications by authors named "Rudolf Haase"

Gene and cellular therapies are nowadays part of therapeutic strategies for the treatment of diverse pathologies. The drawbacks associated with gene therapy-low levels of transgene expression, vector loss during mitosis, and gene silencing-need to be addressed. The pEPI-1 and pEPito family of vectors was developed to overcome these limitations.

View Article and Find Full Text PDF

Background: A key issue for safe and reproducible gene therapy approaches is the autologous and tissue-specific expression of transgenes. Tissue-specific expression in vivo is either achieved by transfer vectors that deliver the gene of interest into a distinct cell type or by use of tissue-specific expression cassettes. Here we present the generation of non-viral, episomally replicating vectors that are able to replicate in a tissue specific manner thus allowing tissue specific transgene expression in combination with episomal replication.

View Article and Find Full Text PDF

In dividing cells, the two aims a gene therapeutic approach should accomplish are efficient nuclear delivery and retention of therapeutic DNA. For stable transgene expression, therapeutic DNA can either be maintained by somatic integration or episomal persistence of which the latter approach would diminish the risk of insertional mutagenesis. As most monosystems fail to fulfill both tasks with equal efficiency, hybrid-vector systems represent promising alternatives.

View Article and Find Full Text PDF

Tumor necrosis factor alpha (TNFα) is a potent antitumoral cytokine, either killing tumor cells directly or affecting the tumor vasculature leading to enhanced accumulation of macromolecular drugs. Due to dose limiting side effects systemic administration of TNFα protein at therapeutically active doses is precluded. With gene vectors, tumor restricted TNFα expression can be achieved and in principle synergize with chemotherapy.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme is a highly aggressive tumor with a median survival of 14 months despite all standard therapies. Focusing on alternative treatment strategies, we evaluated the oncolytic potential of varicella zoster virus (VZV) in malignant glioma cell cultures.

Materials And Methods: Replication of wildtype and mutant VZV was comparatively analyzed in glioma cell lines (U87, U251 and U373) and in primary malignant glioma cells (n=10) in vitro by infectious foci assay, immunofluorescence microscopy and western blot analysis.

View Article and Find Full Text PDF

Background: The National Institutes of Health classified Hepatitis E as an emerging disease since Hepatitis E Virus (HEV) is the major cause of acute hepatitis in developing countries. Interestingly, an increasing number of sporadic cases of HEV infections are described in industrialized countries as zoonosis from domestic livestock. Despite the increasing relevance of this pathogen in clinical virology, commercial antibody assays are mainly based on fragments of HEV open reading frame (ORF) 2 and ORF3.

View Article and Find Full Text PDF

Varicella zoster virus (VZV) ORF25 is a 156 amino acid protein belonging to the approximately 40 core proteins that are conserved throughout the Herpesviridae. By analogy to its functional orthologue UL33 in Herpes simplex virus 1 (HSV-1), ORF25 is thought to be a component of the terminase complex. To investigate how cleavage and encapsidation of viral DNA links to the nuclear egress of mature capsids in VZV, we tested 10 VZV proteins that are predicted to be involved in either of the two processes for protein interactions against each other using three independent protein-protein interaction (PPI) detection systems: the yeast-two-hybrid (Y2H) system, a luminescence based MBP pull-down interaction screening assay (LuMPIS), and a bioluminescence resonance energy transfer (BRET) assay.

View Article and Find Full Text PDF

Background: Plasmid-based gene therapy approaches often lack long-term transgene expression in vivo as a result of silencing or loss of the vector. One way to overcome these limitations is to combine nonsilenced promoters with strong enhancers.

Methods: In the present study, we combine murine or human cytomegalovirus (CMV)-derived enhancer elements with the human elongation factor 1α (EF1α) promoter in a plasmid backbone devoid of potentially immunostimulating cytosine-guanine repeat sequences.

View Article and Find Full Text PDF

We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of radioiodine in neuroblastoma tumors after systemic nonviral polyplex-mediated sodium iodide symporter (NIS) gene delivery. In the present study, we used novel polyplexes based on linear polyethylenimine (LPEI), polyethylene glycol (PEG), and the synthetic peptide GE11 as an epidermal growth factor receptor (EGFR)-specific ligand to target a NIS-expressing plasmid to hepatocellular carcinoma (HCC) (HuH7). Incubation of HuH7 cells with LPEI-PEG-GE11/NIS polyplexes resulted in a 22-fold increase in iodide uptake, which was confirmed in other cancer cell lines correlating well with EGFR expression levels.

View Article and Find Full Text PDF

Polyplexes consisting of a standard CMV promoter driven luciferase plasmid condensed with PAMAM starburst dendrimers (generation 4 and 5) efficiently transfected tumor cells in vitro. Tail vein injection of PAMAM polyplexes into immune competent mice bearing subcutaneous, well vascularized murine neuroblastoma tumors (Neuro2A) led to predominant luciferase reporter gene expression in the tumor, and negligible transgene expression levels in other organs. Repeated PAMAM polyplex applications were well tolerated and prolonged transgene expression in the tumor.

View Article and Find Full Text PDF

Background: The episomal replication of the prototype vector pEPI-1 depends on a transcription unit starting from the constitutively expressed Cytomegalovirus immediate early promoter (CMV-IEP) and directed into a 2000 bp long matrix attachment region sequence (MARS) derived from the human beta-interferon gene. The original pEPI-1 vector contains two mammalian transcription units and a total of 305 CpG islands, which are located predominantly within the vector elements necessary for bacterial propagation and known to be counterproductive for persistent long-term transgene expression.

Results: Here, we report the development of a novel vector pEPito, which is derived from the pEPI-1 plasmid replicon but has considerably improved efficacy both in vitro and in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • A 54-year-old immunocompetent German patient was diagnosed with primary varicella (chickenpox) and showed early T-cell responses to the Varicella-Zoster Virus (VZV) before developing antibodies.
  • The case highlights the importance of detecting VZV-specific T-cells as a diagnostic tool for primary varicella, especially in atypical or mild cases.
  • This method can be particularly useful when VZV DNA is not detectable in the patient's plasma.
View Article and Find Full Text PDF

The GC content is highly variable among the genomes of different organisms. It has been shown that recombinant gene expression in mammalian cells is much more efficient when GC-rich coding sequences of a certain protein are used. In order to study protein-protein interactions in Varicella zoster virus, a GC-low herpesvirus, we have developed a novel luminescence-based maltose-binding protein pull-down interaction screening system (LuMPIS) that is able to overcome the impaired protein expression levels of GC-low ORFs in mammalian expression systems.

View Article and Find Full Text PDF

The increasing knowledge of the molecular and genetic background of many different human diseases has led to the vision that genetic engineering might be used one day for their phenotypic correction. The main goal of gene therapy is to treat loss-of-function genetic disorders by delivering correcting therapeutic DNA sequences into the nucleus of a cell, allowing its long-term expression at physiologically relevant levels. Manifold different vector systems for the therapeutic gene delivery have been described over the recent years.

View Article and Find Full Text PDF

The interaction of microbial pathogens with host cells critically determines the genesis of infectious diseases. Gram-negative, pathogenic bacteria from the genus Yersinia deliver a set of virulence proteins, the so-called Yersinia outer proteins (Yops), inside the eukaryotic cell where the Yops perturb key cellular functions of innate immunity. In our past work, we used Yersinia enterocolitica as a tool to explore the crosstalk between the bacterial pathogen and its host cell.

View Article and Find Full Text PDF

Pathogenic Yersinia spp. use a panel of virulence proteins that antagonize signal transduction processes in infected cells to undermine host defense mechanisms. One of these proteins, Yersinia enterocolitica outer protein P (YopP), down-regulates the NF-kappaB and MAPK signaling pathways, which suppresses the proinflammatory host immune response.

View Article and Find Full Text PDF

TLRs are important sensors of the innate immune system that serve to identify conserved microbial components to mount a protective immune response. They furthermore control the survival of the challenged cell by governing the induction of pro- and antiapoptotic signaling pathways. Pathogenic Yersinia spp.

View Article and Find Full Text PDF

Conserved bacterial components potently activate host immune cells through transmembrane Toll-like receptors (TLRs), which trigger a protective immune response but also may signal apoptosis. In this study, we investigated the roles of TLR2 and TLR4 as inducers of apoptosis in Yersinia enterocolitica-infected macrophages. Yersiniae suppress activation of the antiapoptotic NF-kappaB signaling pathway in host cells by inhibiting inhibitory kappaB kinase-beta.

View Article and Find Full Text PDF