Publications by authors named "Rudo L Simeon"

Genetic suppressor elements (GSEs) are biomolecules derived from a gene or genome of interest that act as transdominant inhibitors of biological functions presumably by disruption of critical biological interfaces. We exploited a cell death reporter cell line for hepatitis C virus (HCV) infection, n4mBid, to develop an iterative selection/enrichment strategy for the identification of anti-HCV GSEs. Using this approach, a library of fragments of an HCV genome was screened for sequences that suppress HCV infection.

View Article and Find Full Text PDF

We describe a new cell-penetrating protein, B1, capable of delivering conjugated proteins and nucleic acids into mammalian cells. B1 is a 244-amino-acid product of a single-base frameshift in the gene encoding enhanced green fluorescent protein (eGFP). The molecule has a net positive charge of 43 and a very high charge-to-mass ratio of 1.

View Article and Find Full Text PDF

Despite recent progress in the development of direct-acting antiviral agents against hepatitis C virus (HCV), more effective therapies are still urgently needed. We and others previously identified three phenothiazine compounds as potent HCV entry inhibitors. In this study, we show that phenothiazines inhibit HCV entry at the step of virus-host cell fusion, by intercalating into cholesterol-rich domains of the target membrane and increasing membrane fluidity.

View Article and Find Full Text PDF

The present study describes the creation and characterization of a hepatoma cell line, n4mBid, that supports all stages of the hepatitis C virus (HCV) life cycle and strongly reports HCV infection by a cell-death phenotype. The n4mBid cell line is derived from the highly HCV-permissive Huh-7.5 hepatoma cell line and contains a modified Bid protein (mBid) that is cleaved and activated by the HCV serine protease NS3-4A.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) life cycle involves multiple steps, but most current drug candidates target only viral replication. The inability to systematically discover inhibitors targeting multiple steps of the HCV life cycle has hampered antiviral development. We present a simple screen for HCV antivirals based on the alleviation of HCV-mediated cytopathic effect in an engineered cell line-n4mBid.

View Article and Find Full Text PDF