Publications by authors named "Rudner D"

Article Synopsis
  • Endospore-forming bacteria can survive prolonged starvation by entering a dormant state as spores, which can remain inactive for years but can quickly resume growth when nutrients are available.
  • Researchers used transposon-sequencing to identify genes involved in spore germination, discovering both known and new germination genes; they provided detailed characterization of 15 genes, focusing on one key protein, GerY.
  • Findings suggest that proteins like GerY, GerT, and GerP are crucial for nutrient transit through the spore coat to activate germination, highlighting their independent roles in the germination process.
View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a new platform that enhances the discovery of optical biosensors, enabling faster and more efficient development through genetically encodable fluorogenic amino acids (FgAAs).
  • The engineered nanosensors can detect specific proteins and small molecules with significant increases in fluorescence and fast response times, which are beneficial for real-time diagnostics and live-cell imaging.
  • This advanced system allows for rapid testing of numerous sensor candidates, improving sensitivity for detecting SARS-CoV-2 antigens and has the potential for broader applications in modifying proteins with unique functionalities.
View Article and Find Full Text PDF

Peptidoglycan (PG) and most surface glycopolymers and their modifications are built in the cytoplasm on the lipid carrier undecaprenyl phosphate (UndP). These lipid-linked precursors are then flipped across the membrane and polymerized or directly transferred to surface polymers, lipids, or proteins. Despite its essential role in envelope biogenesis, UndP is maintained at low levels in the cytoplasmic membrane.

View Article and Find Full Text PDF

Staphylococcus aureus is a Gram-positive pathogen responsible for antibiotic-resistant infections. To identify vulnerabilities in cell envelope biogenesis that may overcome resistance, we enriched for S. aureus transposon mutants with defects in cell surface integrity or cell division by sorting for cells that stain with propidium iodide or have increased light-scattering properties, respectively.

View Article and Find Full Text PDF

Bacterial spores can remain dormant for decades yet rapidly germinate and resume growth in response to nutrients. GerA family receptors that sense and respond to these signals have recently been shown to oligomerize into nutrient-gated ion channels. Ion release initiates exit from dormancy.

View Article and Find Full Text PDF

The earliest genes in bacterial flagellar assembly are activated by narrowly-conserved proteins called master regulators that often act as heteromeric complexes. A complex of SwrA and the response-regulator transcription factor DegU is thought to form the master flagellar regulator in Bacillus subtilis but how the two proteins co-operate to activate gene expression is poorly-understood. Here we find using ChIP-Seq that SwrA interacts with a subset of DegU binding sites in the chromosome and does so in a DegU-dependent manner.

View Article and Find Full Text PDF
Article Synopsis
  • Class A penicillin-binding proteins (aPBPs) are crucial for bacterial cell wall construction and are key targets for antibiotics like penicillin.
  • This study identifies variants of the enzyme PBP2a that can work independently of its typical partner, MacP, revealing that specific amino acid changes can activate its cell wall synthesis function.
  • The findings also suggest a shared activation mechanism for PBP2a and other aPBPs across different organisms, enhancing our understanding of bacterial cell wall regulation.
View Article and Find Full Text PDF

Gram-positive bacteria use SigI/RsgI-family sigma factor/anti-sigma factor pairs to sense and respond to cell wall defects and plant polysaccharides. In this signal transduction pathway involves regulated intramembrane proteolysis (RIP) of the membrane-anchored anti-sigma factor RsgI. However, unlike most RIP signaling pathways, site-1 cleavage of RsgI on the extracytoplasmic side of the membrane is constitutive and the cleavage products remain stably associated, preventing intramembrane proteolysis.

View Article and Find Full Text PDF

Unlabelled: SwrA activates flagellar gene expression in to increase the frequency of motile cells in liquid and elevate flagellar density to enable swarming over solid surfaces. Here we use ChIP-seq to show that SwrA interacts with many sites on the chromosome in a manner that depends on the response regulator DegU. We identify a DegU-specific inverted repeat DNA sequence and show that SwrA synergizes with phosphorylation to increase DegU DNA binding affinity.

View Article and Find Full Text PDF

Unlabelled: Gram-positive bacteria use SigI/RsgI-family sigma factor/anti-sigma factor pairs to sense and respond to cell wall defects and plant polysaccharides. In this signal transduction pathway involves regulated intramembrane proteolysis (RIP) of the membrane-anchored anti-sigma factor RsgI. However, unlike most RIP signaling pathways, site-1 cleavage of RsgI on the extracytoplasmic side of the membrane is constitutive and the cleavage products remain stably associated, preventing intramembrane proteolysis.

View Article and Find Full Text PDF

is a gram-positive pathogen responsible for life-threatening infections that are difficult to treat due to antibiotic resistance. The identification of new vulnerabilities in essential processes like cell envelope biogenesis represents a promising avenue towards the development of anti-staphylococcal therapies that overcome resistance. To this end, we performed cell sorting-based enrichments for mutants with defects in envelope integrity and cell division.

View Article and Find Full Text PDF

The sorting of phospholipids between the inner and outer leaflets of the membrane bilayer is a fundamental problem in all organisms. Despite years of investigation, most of the enzymes that catalyze phospholipid reorientation in bacteria remain unknown. Studies from almost half a century ago in and revealed that newly synthesized phosphatidylethanolamine (PE) is rapidly translocated to the outer leaflet of the bilayer [Rothman & Kennedy, , 1821-1825 (1977)] but the identity of the putative PE flippase has eluded discovery.

View Article and Find Full Text PDF

Bacterial spores resist antibiotics and sterilization and can remain metabolically inactive for decades, but they can rapidly germinate and resume growth in response to nutrients. Broadly conserved receptors embedded in the spore membrane detect nutrients, but how spores transduce these signals remains unclear. Here, we found that these receptors form oligomeric membrane channels.

View Article and Find Full Text PDF

Most bacteria are surrounded by a cell wall composed of peptidoglycan (PG) that specifies shape and protects the cell from osmotic rupture. Growth, division, and morphogenesis are intimately linked to the synthesis of this exoskeleton but also its hydrolysis. The enzymes that cleave the PG meshwork require careful control to prevent aberrant hydrolysis and loss of envelope integrity.

View Article and Find Full Text PDF

Peptidoglycan and almost all surface glycopolymers in bacteria are built in the cytoplasm on the lipid carrier undecaprenyl phosphate (UndP). These UndP-linked precursors are transported across the membrane and polymerized or directly transferred to surface polymers, lipids or proteins. UndP is then flipped to regenerate the pool of cytoplasmic-facing UndP.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that certain special parts of proteins called IDRs help bacteria keep their cell walls strong.
  • When there's trouble with the cell wall, a protein called RsgI gets activated, which helps send a signal to fix things.
  • Both RsgI and another protein called PBP1 have these IDRs that help them work together to repair any weaknesses in the bacteria's protective layer.
View Article and Find Full Text PDF

During bacterial endospore formation, the developing spore is internalized into the mother cell through a phagocytic-like process called engulfment, which involves synthesis and hydrolysis of peptidoglycan. Engulfment peptidoglycan hydrolysis requires the widely conserved and well-characterized DMP complex, composed of SpoIID, SpoIIM, and SpoIIP. In contrast, although peptidoglycan synthesis has been implicated in engulfment, the protein players involved are less well defined.

View Article and Find Full Text PDF

Bacteria require membrane fission for both cell division and endospore formation. In Bacillus subtilis, sporulation initiates with an asymmetric division that generates a large mother cell and a smaller forespore that contains only a quarter of its genome. As the mother cell membranes engulf the forespore, a DNA translocase pumps the rest of the chromosome into the small forespore compartment, inflating it due to increased turgor.

View Article and Find Full Text PDF

In response to starvation, endospore-forming bacteria differentiate into stress-resistant spores that can remain dormant for years yet rapidly germinate and resume growth in response to nutrients. The small molecule dipicolinic acid (DPA) plays a central role in both the stress resistance of the dormant spore and its exit from dormancy during germination. The locus is required for DPA import during sporulation and has been implicated in its export during germination, but the molecular bases are unclear.

View Article and Find Full Text PDF

Penicillin and related antibiotics disrupt cell wall synthesis in bacteria causing the downstream misactivation of cell wall hydrolases called autolysins to induce cell lysis. Despite the clinical importance of this phenomenon, little is known about the factors that control autolysins and how penicillins subvert this regulation to kill cells. In the pathogen (), LytA is the major autolysin responsible for penicillin-induced bacteriolysis.

View Article and Find Full Text PDF

The WalR-WalK two component signaling system in Bacillus subtilis functions in the homeostatic control of the peptidoglycan (PG) hydrolases LytE and CwlO that are required for cell growth. When the activities of these enzymes are low, WalR activates transcription of and and represses transcription of , a secreted inhibitor of LytE. Conversely, when PG hydrolase activity is too high, WalR-dependent expression of and is reduced and is derepressed.

View Article and Find Full Text PDF

Bacteria from the orders Bacillales and Clostridiales differentiate into stress-resistant spores that can remain dormant for years, yet rapidly germinate upon nutrient sensing. How spores monitor nutrients is poorly understood but in most cases requires putative membrane receptors. The prototypical receptor from Bacillus subtilis consists of three proteins (GerAA, GerAB, GerAC) required for germination in response to L-alanine.

View Article and Find Full Text PDF

Bacterial spores can rapidly exit dormancy through the process of germination. This process begins with the activation of nutrient receptors embedded in the spore membrane. The prototypical germinant receptor in Bacillus subtilis responds to l-alanine and is thought to be a complex of proteins encoded by the genes in the operon: , , and .

View Article and Find Full Text PDF

Little is known about mechanisms of membrane fission in bacteria despite their requirement for cytokinesis. The only known dedicated membrane fission machinery in bacteria, fission protein B (FisB), is expressed during sporulation in Bacillus subtilis and is required to release the developing spore into the mother cell cytoplasm. Here, we characterized the requirements for FisB-mediated membrane fission.

View Article and Find Full Text PDF

Bacillus subtilis structural maintenance of chromosomes (SMC) complexes are topologically loaded at centromeric sites adjacent to the replication origin by the partitioning protein ParB. These ring-shaped ATPases then translocate down the left and right chromosome arms while tethering them together. Here, we show that the site-specific recombinase XerD, which resolves chromosome dimers, is required to unload SMC tethers when they reach the terminus.

View Article and Find Full Text PDF