Publications by authors named "Rudik A"

The development of effective antivirals is of great importance due to the threat associated with the rapid spread of viral infections. The accumulation of data in scientific publications and in databases of biologically active compounds provides an opportunity to extract specific information about interactions between chemicals and their viral and host targets. This information can be used for elucidation of knowledge about potential antiviral activity of chemical compounds, their side effects and toxicities.

View Article and Find Full Text PDF

The accurate prediction of secondary structures of proteins (SSPs) is a critical challenge in molecular biology and structural bioinformatics. Despite recent advancements, this task remains complex and demands further exploration. This study presents a novel approach to SSP prediction using atom-centric substructural multilevel neighborhoods of atoms (MNA) descriptors for protein molecular fragments.

View Article and Find Full Text PDF

The analysis of drug-induced gene expression profiles (DIGEP) is widely used to estimate the potential therapeutic and adverse drug effects as well as the molecular mechanisms of drug action. However, the corresponding experimental data is absent for many existing drugs and drug-like compounds. To solve this problem, we created the DIGEP-Pred 2.

View Article and Find Full Text PDF

In silico prediction of cell line cytotoxicity considerably decreases time and financial costs during drug development of new antineoplastic agents. (Q)SAR models for the prediction of drug-like compound cytotoxicity in relation to nine breast cancer cell lines (T47D, ZR-75-1, MX1, Hs-578T, MCF7-DOX, MCF7, Bcap37, MCF7R, BT-20) were created by GUSAR software based on the data from ChEMBL database (v. 30).

View Article and Find Full Text PDF

After the biotransformation of xenobiotics in the human body, the biological activity of the metabolites may differ from the activity of parent compounds. Therefore, to assess the overall biological activity of a drug-like compound, it is important to take into account its metabolites and their biological activity. We developed MetaTox 2.

View Article and Find Full Text PDF

Predicting viral drug resistance is a significant medical concern. The importance of this problem stimulates the continuous development of experimental and new computational approaches. The use of computational approaches allows researchers to increase therapy effectiveness and reduce the time and expenses involved when the prescribed antiretroviral therapy is ineffective in the treatment of infection caused by the human immunodeficiency virus type 1 (HIV-1).

View Article and Find Full Text PDF

The metagenome of bacteria colonizing the human intestine is a set of genes that is almost 150 times greater than the set of host genes. Some of these genes encode enzymes whose functioning significantly expands the number of potential pathways for xenobiotic metabolism. The resulting metabolites can exhibit activity different from that of the parent compound.

View Article and Find Full Text PDF

The COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against COVID-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors.

View Article and Find Full Text PDF

The human gut microbiota (HGM) comprises a complex population of microorganisms that significantly affect human health, including their influence on xenobiotics metabolism. Many pharmaceuticals are taken orally and thus come into contact with HGM, which can metabolize them. Therefore, it is necessary to evaluate the effect of HGM on the fate of pharmaceuticals in the organism.

View Article and Find Full Text PDF

Cellular agriculture could meet growing demand for animal products, but yields are typically low and regulatory bodies restrict genetic modification for cultured meat production. Here we demonstrate the spontaneous immortalization and genetic stability of fibroblasts derived from several chicken breeds. Cell lines were adapted to grow as single-cell suspensions using serum-free culture medium, reaching densities of 108 × 10 cells per ml in continuous culture, corresponding to yields of 36% w/v.

View Article and Find Full Text PDF

The search for the relationships between CDR3 TCR sequences and epitopes or MHC types is a challenging task in modern immunology. We propose a new approach to develop the classification models of structure-activity relationships (SAR) using molecular fragment descriptors MNA (Multilevel Neighbourhoods of Atoms) to represent CDR3 TCR sequences and the naïve Bayes classifier algorithm. We have created the freely available TCR-Pred web application (http://way2drug.

View Article and Find Full Text PDF

Next Generation Sequencing (NGS) technologies are rapidly entering clinical practice. A promising area for their use lies in the field of newborn screening. The mass screening of newborns using NGS technology leads to the discovery of a large number of new missense variants that need to be assessed for association with the development of hereditary diseases.

View Article and Find Full Text PDF

In vitro cell-line cytotoxicity is widely used in the experimental studies of potential antineoplastic agents and evaluation of safety in drug discovery. In silico estimation of cytotoxicity against hundreds of tumor cell lines and dozens of normal cell lines considerably reduces the time and costs of drug development and the assessment of new pharmaceutical agent perspectives. In 2018, we developed the first freely available web application (CLC-Pred) for the qualitative prediction of cytotoxicity against 278 tumor and 27 normal cell lines based on structural formulas of 59,882 compounds.

View Article and Find Full Text PDF

Human cytochrome P450 enzymes (CYPs) are heme-containing monooxygenases. This superfamily of drug-metabolizing enzymes is responsible for the metabolism of most drugs and other xenobiotics. The inhibition of CYPs may lead to drug-drug interactions and impair the biotransformation of drugs.

View Article and Find Full Text PDF

Motivation: Application of chemical named entity recognition (CNER) algorithms allows retrieval of information from texts about chemical compound identifiers and creates associations with physical-chemical properties and biological activities. Scientific texts represent low-formalized sources of information. Most methods aimed at CNER are based on machine learning approaches, including conditional random fields and deep neural networks.

View Article and Find Full Text PDF
Article Synopsis
  • Malaria-causing parasite Plasmodium falciparum uses signals from the body's immune response to decide when to change its behavior.
  • High levels of a chemical called CXCL10 are found in severe cases of malaria but lower in patients who recover without issues.
  • When CXCL10 levels are high, the parasite speeds up its growth, and if it can’t keep CXCL10 low, it changes its strategy to survive better in the host.
View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) infection remains one of the most severe problems for humanity, particularly due to the development of HIV resistance. To evaluate an association between viral sequence data and drug combinations and to estimate an effect of a particular drug combination on the treatment results, collection of the most representative drug combinations used to cure HIV and the biological data on amino acid sequences of HIV proteins is essential. We have created a new, freely available web database containing 1,651 amino acid sequences of HIV structural proteins [reverse transcriptase (RT), protease (PR), integrase (IN), and envelope protein (ENV)], treatment history information, and CD4+ cell count and viral load data available by the user's query.

View Article and Find Full Text PDF

Metabolic stability refers to the susceptibility of compounds to the biotransformation; it is characterized by such pharmacokinetic parameters as half-life (T1/2) and clearance (CL). Generally, these parameters are estimated by in vitro assays, which are based on cells or subcellular fractions (mainly liver microsomal enzymes) and serve as models of the processes occurring in living organisms. Data obtained from the experiments are used to build QSAR (Quantitative Structure-Activity Relationship) models.

View Article and Find Full Text PDF

Drug-drug interactions (DDIs) can cause drug toxicities, reduced pharmacological effects, and adverse drug reactions. Studies aiming to determine the possible DDIs for an investigational drug are part of the drug discovery and development process and include an assessment of the DDIs potential mediated by inhibition or induction of the most important drug-metabolizing cytochrome P450 isoforms. Our study was dedicated to creating a computer model for prediction of the DDIs mediated by the seven most important P450 cytochromes: CYP1A2, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, and CYP3A4.

View Article and Find Full Text PDF

The growing amount of experimental data on chemical objects includes properties of small molecules, results of studies of their interaction with human and animal proteins, and methods of synthesis of organic compounds (OCs). The data obtained can be used to identify the names of OCs automatically, including all possible synonyms and relevant data on the molecular properties and biological activity. Utilization of different synonymic names of chemical compounds allows researchers to increase the completeness of data on their properties available from publications.

View Article and Find Full Text PDF

Mature red blood cells (RBCs) lack internal organelles and canonical defense mechanisms, making them both a fascinating host cell, in general, and an intriguing choice for the deadly malaria parasite Plasmodium falciparum (Pf), in particular. Pf, while growing inside its natural host, the human RBC, secretes multipurpose extracellular vesicles (EVs), yet their influence on this essential host cell remains unknown. Here we demonstrate that Pf parasites, cultured in fresh human donor blood, secrete within such EVs assembled and functional 20S proteasome complexes (EV-20S).

View Article and Find Full Text PDF

Most drug-like compounds can interact with several pharmacological targets and exhibit complex biological activity spectra. Analysis of these spectra helps find and optimize new pharmaceutical agents or identify new uses for approved and investigational drugs (drug repurposing). Since most pharmaceuticals usually undergo biotransformation in the human body, it is reasonable during drug discovery to take into account biological activity spectra of metabolites.

View Article and Find Full Text PDF

Most pharmaceutical substances interact with several or even many molecular targets in the organism, determining the complex profiles of their biological activity. Moreover, due to biotransformation in the human body, they form one or several metabolites with different biological activity profiles. Therefore, the development and rational use of novel drugs requires the analysis of their biological activity profiles, taking into account metabolism in the human body.

View Article and Find Full Text PDF

Drug-drug interactions (DDIs) severity assessment is a crucial problem because polypharmacy is increasingly common in modern medical practice. Many DDIs are caused by alterations of the plasma concentrations of one drug due to another drug inhibiting and/or inducing the metabolism or transporter-mediated disposition of the victim drug. Accurate assessment of clinically relevant DDIs for novel drug candidates represents one of the significant tasks of contemporary drug research and development and is important for practicing physicians.

View Article and Find Full Text PDF