Publications by authors named "Rudiger Horstkorte"

Article Synopsis
  • - Meningiomas are mostly benign tumors but can have severe malignant forms, with research exploring the effects of glucose on their growth and behavior through diets low in glucose to potentially improve outcomes.
  • - The study specifically analyzed how different glucose levels (low, normal, and high) affected a malignant meningioma cell line, examining migration and invasion using impedance-based methods and protein expression through immunoblotting.
  • - Findings revealed that low glucose levels decreased the invasive capabilities of the malignant cells, while high glucose levels worsened their barrier function and adhesion, linked to lower expression of focal adhesion kinase (FAK).
View Article and Find Full Text PDF

Background: GNE Myopathy is a unique recessive neuromuscular disorder characterized by adult-onset, slowly progressive distal and proximal muscle weakness, caused by mutations in the GNE gene which is a key enzyme in the biosynthesis of sialic acid. To date, the precise pathophysiology of the disease is not well understood and no reliable animal model is available. Gne KO is embryonically lethal in mice.

View Article and Find Full Text PDF

GNE myopathy (GNEM) is a late-onset muscle atrophy, caused by mutations in the gene for the key enzyme of sialic acid biosynthesis, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). With an incidence of one to nine cases per million it is an ultra-rare, so far untreatable, autosomal recessive disease. Several attempts have been made to treat GNEM patients by oral supplementation with sialic acid precursors (e.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a highly aggressive brain tumor that often utilizes aerobic glycolysis for energy production (Warburg effect), resulting in increased methylglyoxal (MGO) production. MGO, a reactive dicarbonyl compound, causes protein alterations and cellular dysfunction via glycation. In this study, we investigated the effect of glycation on sialylation, a common post-translational modification implicated in cancer.

View Article and Find Full Text PDF

Background: A key mechanism in the neuromuscular disease GNE myopathy (GNEM) is believed to be that point mutations in the gene impair sialic acid synthesis - maybe due to UDP--acetylglucosamine 2-epimerase/-acetylmannosamine kinase (GNE) activity restrictions - and resulting in muscle tissue loss. -acetylmannosamine (ManNAc) is the first product of the bifunctional GNE enzyme and can therefore be regarded as a precursor of sialic acids. This study investigates whether this is also a suitable substance for restoring the sialic acid content in -deficient cells.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a highly aggressive and invasive brain tumor with a poor prognosis despite extensive treatment. The switch to aerobic glycolysis, known as the Warburg effect, in cancer cells leads to an increased production of methylglyoxal (MGO), a potent glycation agent with pro-tumorigenic characteristics. MGO non-enzymatically reacts with proteins, DNA, and lipids, leading to alterations in the signaling pathways, genomic instability, and cellular dysfunction.

View Article and Find Full Text PDF

Mutations in the gene coding for the bi-functional UDP--acetylglucosamine 2-epimerase/-acetylmannosamine kinase (GNE), the key enzyme of the sialic acid biosynthesis, are responsible for autosomal-recessive GNE myopathy (GNEM). GNEM is an adult-onset disease with a yet unknown exact pathophysiology. Since the protein appears to work adequately for a certain period of time even though the mutation is already present, other effects appear to influence the onset and progression of the disease.

View Article and Find Full Text PDF

Background: Propofol is a short-acting anesthetic, which is often used for induction and maintenance of general anesthesia, sedation for mechanically ventilated adults and procedural sedation. Several side effects of propofol are known and a substantial number of patients suffer from post-operative delirium after propofol application. In this study, we analyzed the effect of propofol on the function and protein expression profile on a proteome-wide scale.

View Article and Find Full Text PDF

Meningiomas are the most common non-malignant intracranial tumors and prefer, like most tumors, anaerobic glycolysis for energy production (Warburg effect). This anaerobic glycolysis leads to an increased synthesis of the metabolite methylglyoxal (MGO) or glyoxal (GO), which is known to react with amino groups of proteins. This reaction is called glycation, thereby building advanced glycation end products (AGEs).

View Article and Find Full Text PDF

Among the enzymes of the biosynthesis of sialoglycoconjugates, uridine diphosphate-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE), catalyzing the first essential step of the sialic acid (Sia) de novo biosynthesis, and cytidine monophosphate (CMP)-Sia synthase (CMAS), activating Sia to CMP-Sia, are particularly important. The knockout of either of these enzymes in mice is embryonically lethal. While the lethality of Cmas-/- mice has been attributed to a maternal complement attack against asialo fetal placental cells, the cause of lethality in Gne-deficient embryos has remained elusive.

View Article and Find Full Text PDF

GDP-mannose-pyrophosphorylase-B (GMPPB) facilitates the generation of GDP-mannose, a sugar donor required for glycosylation. GMPPB defects cause muscle disease due to hypoglycosylation of α-dystroglycan (α-DG). Alpha-DG is part of a protein complex, which links the extracellular matrix with the cytoskeleton, thus stabilizing myofibers.

View Article and Find Full Text PDF

Meningiomas are the most common non-malignant intracranial tumors. Like most tumors, meningiomas prefer anaerobic glycolysis for energy production (Warburg effect). This leads to an increased synthesis of the metabolite methylglyoxal (MGO).

View Article and Find Full Text PDF

The function of the human blood-brain barrier (BBB), consisting mainly of the basement membrane and microvascular endothelial cells, is to protect the brain and regulate its metabolism. Dysfunction of the BBB can lead to increased permeability, which can be linked with several pathologies, including meningitis, sepsis, and postoperative delirium. Advanced glycation end products (AGE) are non-enzymatic, posttranslational modifications of proteins, which can affect their function.

View Article and Find Full Text PDF

Sialic acids are terminal sugars on the cell surface that are found on all cell types including immune cells like natural killer (NK) cells. The attachment of sialic acids to different glycan structures is catalyzed by sialyltransferases in the Golgi. However, the expression pattern of sialyltransferases in NK cells and their expression after activation has not yet been analyzed.

View Article and Find Full Text PDF

Breast cancer is the most frequent cancer diagnosed in women and the second most common cancer-causing death worldwide. The major problem around the management of breast cancer is its high heterogeneity and the development of therapeutic resistance. Therefore, understanding the fundamental breast cancer biology is crucial for better diagnosis and therapy.

View Article and Find Full Text PDF

Neuroblastoma is the second most frequent extracranial tumor, affecting young children worldwide. One hallmark of tumors such as neuroblastomas, is the expression of polysialic acid, which interferes with adhesion and may promote invasion and metastasis. Since tumor cells use glycolysis for energy production, they thereby produce as side product methylglyoxal (MGO), which reacts with proteins to advanced glycation end products in a mechanism called glycation.

View Article and Find Full Text PDF

The human blood-brain barrier (BBB) is characterized by a very low permeability for biomolecules in order to protect and regulate the metabolism of the brain. The BBB is mainly formed out of endothelial cells embedded in collagen IV and fibronectin-rich basement membranes. Several pathologies result from dysfunction of the BBB followed by microbial traversal, causing diseases such as meningitis.

View Article and Find Full Text PDF

Sialic acid-binding Ig-like lectin (Siglec) receptors are linked to neurodegenerative processes, but the role of sialic acids in physiological aging is still not fully understood. We investigated the impact of reduced sialylation in the brain of mice heterozygous for the enzyme glucosamine-2-epimerase/N-acetylmannosamine kinase (GNE+/-) that is essential for sialic acid biosynthesis. We demonstrate that GNE+/- mice have hyposialylation in different brain regions, less synapses in the hippocampus and reduced microglial arborization already at 6 months followed by increased loss of neurons at 12 months.

View Article and Find Full Text PDF

Aging represents the accumulation of changes in an individual over time, encompassing physical, psychological, and social changes. Posttranslational modifications of proteins such as glycosylation, including sialylation or glycation, are proposed to be involved in this process, since they modulate a variety of molecular and cellular functions. In this study, we analyzed selected posttranslational modifications and the respective proteins on which they occur in young and old mouse brains.

View Article and Find Full Text PDF

Unlabelled: Glycation occurs as a non-enzymatic reaction between amino and thiol groups of proteins, lipids, and nucleotides with reducing sugars or α-dicarbonyl metabolites. The chemical reaction underlying is the Maillard reaction leading to the formation of a heterogeneous group of compounds named advanced glycation end products (AGEs). Deleterious effects have been observed to accompany glycation such as alterations of protein structure and function resulting in crosslinking and accumulation of insoluble protein aggregates.

View Article and Find Full Text PDF

Glycation and the accumulation of advanced glycation end products (AGEs) are known to occur during normal aging but also in the progression of several diseases, such as diabetes. Diabetes type II and aging both lead to impaired wound healing. It has been demonstrated that macrophages play an important role in impaired wound healing, however, the underlying causes remain unknown.

View Article and Find Full Text PDF

One hallmark of molecular aging is glycation, better known as formation of so-called advanced glycation end products (AGEs), where reactive carbonyls react with amino-groups of proteins. AGEs accumulate over time and are responsible for various age-dependent diseases and impairments. Two very potent dicarbonyls to generate AGEs are glyoxal (GO) and methylglyoxal (MGO).

View Article and Find Full Text PDF

Ascorbic acid better known as vitamin C, is a reducing carbohydrate needed for a variety of functions in the human body. The most important characteristic of ascorbic acid is the ability to donate two electrons, predestining it as a major player in balancing the physiological redox state and as a necessary cofactor in multiple enzymatic hydroxylation processes. Ascorbic acid can be reversibly oxidized in two steps, leading to semidehydroascorbic acid and dehydroascorbic acid, respectively.

View Article and Find Full Text PDF

The balance between protein synthesis and degradation regulates the amount of expressed proteins. This protein turnover is usually quantified as the protein half-life time. Several studies suggest that protein degradation decreases with age and leads to increased deposits of damaged and non-functional proteins.

View Article and Find Full Text PDF

Sialic acid (Sia) is a highly important constituent of glycoconjugates, such as N- and O-glycans or glycolipids. Due to its position at the non-reducing termini of oligo- and polysaccharides, as well as its unique chemical characteristics, sialic acid is involved in a multitude of different receptor-ligand interactions. By modifying the expression of sialic acid on the cell surface, sialic acid-dependent interactions will consequently be influenced.

View Article and Find Full Text PDF