In recent years, a lot of studies have been published dealing with the anatomy of the nervous system in different spiralian species. The only nemertean species investigated in this context probably shows derived characters and thus the conditions found there are not useful in inferring the relationship between nemerteans and other spiralian taxa. Ingroup relationships within Nemertea are still unclear, but there is some agreement that the palaeonemerteans form a basal, paraphyletic grade.
View Article and Find Full Text PDFBackground: The now thriving field of neurophylogeny that links the morphology of the nervous system to early evolutionary events relies heavily on detailed descriptions of the neuronal architecture of taxa under scrutiny. While recent accounts on the nervous system of a number of animal clades such as arthropods, annelids, and molluscs are abundant, in depth studies of the neuroanatomy of nemerteans are still wanting. In this study, we used different staining techniques and confocal laser scanning microscopy to reveal the architecture of the nervous system of Lineus viridis with high anatomical resolution.
View Article and Find Full Text PDFHere we describe the neuronal organization of the arcuate body in the brain of the wandering spider Cupiennius salei. The internal anatomy of this major brain center is analyzed in detail based on allatostatin-, proctolin-, and crustacean cardioactive peptide (CCAP)-immunohistochemistry. Prominent neuronal features are demonstrated in graphic reconstructions.
View Article and Find Full Text PDFBackground: Invertebrate nervous systems are highly disparate between different taxa. This is reflected in the terminology used to describe them, which is very rich and often confusing. Even very general terms such as 'brain', 'nerve', and 'eye' have been used in various ways in the different animal groups, but no consensus on the exact meaning exists.
View Article and Find Full Text PDFBackground: Paired mushroom bodies, an unpaired central complex, and bilaterally arranged clusters of olfactory glomeruli are among the most distinctive components of arthropod neuroarchitecture. Mushroom body neuropils, unpaired midline neuropils, and olfactory glomeruli also occur in the brains of some polychaete annelids, showing varying degrees of morphological similarity to their arthropod counterparts. Attempts to elucidate the evolutionary origin of these neuropils and to deduce an ancestral ground pattern of annelid cerebral complexity are impeded by the incomplete knowledge of annelid phylogeny and by a lack of comparative neuroanatomical data for this group.
View Article and Find Full Text PDFThe conference 'Celebrating Darwin: From the Origin of Species to Deep Metazoan Phylogeny' was held at the Humboldt University in Berlin, from 3 to 6 March 2009. Specialists from the fields of bioinformatics, molecular biology, developmental biology, comparative morphology and paleontology joined forces to present and discuss novel approaches in reconstructing the still unresolved early branching patterns of the metazoan tree of life.
View Article and Find Full Text PDFThis account describes the organization of the brain of the adult Euperipatoides rowelli, a member of the Onychophora or "velvet worms." The present account identifies three cerebral divisions, the first of which contains primary olfactory neuropils, visual neuropils, and brain regions that correspond anatomically to the mushroom bodies of annelids, chelicerates, myriapods, and insects. In common with the brains of many chelicerates, the onychophoran brain is supplied by many thousands of uniformly small basophilic perikarya.
View Article and Find Full Text PDFArthropod Struct Dev
September 2002
Most insects possess an assemblage of midline neuropils in their protocerebrum called the central complex. Recent studies have identified comparable assemblages in the malacostracan protocerebrum. Studies of Drosophila melanogaster locomotory mutants suggest that in insects one role for the central complex might be to orchestrate limb actions.
View Article and Find Full Text PDFNeuroanatomical studies have demonstrated that the architecture and organization among neuropils are highly conserved within any order of arthropods. The shapes of nerve cells and their neuropilar arrangements provide robust characters for phylogenetic analyses. Such analyses so far have agreed with molecular phylogenies in demonstrating that entomostracans+malacostracans belong to a clade (Tetraconata) that includes the hexapods.
View Article and Find Full Text PDFBeing able to discriminate between neurons and non-neuronal cells such as glia and tracheal cells has been a major problem in insect neuroscience, because glia-specific antisera are available for only a small number of species such as Drosophila melanogaster and Manduca sexta. Especially developmental or comparative studies often require an estimate of neuron numbers. Since neuronal and glial cell bodies are in many cases indiscernible in situ, a method to distinguish neurons from non-neuronal cells that works in any given species is wanting.
View Article and Find Full Text PDF